BASIC for the

APPLE

Programming and Applications

J

LARRY JOEL GOLDSTEIN
and MARTIN GOLDSTEIN

BASIC for THE APPLE II

PROGRAMMING
and APPLICATIONS

Larry Joel Goldstein Martin Goldstein

University of Maryland Goldstein Associates
College Park, MD West Palm Beach,
Florida

Robert J. Brady Co.
A Prentice-Hall Publishing and
Communications Company

Bowie, Maryland 20715

Executive Editor: David T. Culverwell

Production Editor: Michael J. Rogers

Art Director: Bernard Vervin

Photography: George Dodson

Typesetting: Bi-Comp, Inc., York, PA

Typefaces: Aster (display) and Optima (text)

Printed by: R. R. Donnelley & Sons Company, Harrisonburg, VA
Text designer: Michael J. Rogers

Cover design: Don Sellers

Copyright © 1982 by Robert). Brady Co.

All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechanical,
including photocopying and recording, or by any information storage
and retrieval system, without permission in writing from the publisher.
For information, address Robert J. Brady Co.,Bowie, Maryland 20715.

Library of Congress Cataloging in Publication Data

Goldstein, Larry Joel.
Basic for the Apple II.
Includes index.
1. Apple Il (Computer)—Programming.
2. Basic (Computer program language)
I. Goldstein, Martin, 1919 Mar. 28—
Il. Title.
QA76.8.A662G64 1982 001.64'2 82-9418
ISBN 0-89303-190-9
ISBN 0-89303-189-5 (pbk.)

Prentice-Hall International, Inc., London
Prentice-Hall Canada, Inc., Scarborough, Ontario
Prentice-Hall of Australia, Pty., Ltd., Sydney
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books, Limited, Petone, New Zealand

Printed in the United States of America

82 83 84 85 86 87 88 89 90 91 92 10 9 8 7 6 5 4 3 2

CONTENTS

Preface v

1. A First Look at Computers 1

1.1 Introduction 1

1.2 What is a Computer? 4

1.3 Meet Your Apple Il Computer 5

2. Getting Started in Applesoft BASIC 11

2.1 Computer Languages and Programs 11

2.2 Elementary Applesoft BASIC Programs 15
2.3 Giving Names to Numbers and Words 25
2.4 Doing Repetitive Operations 32

2.5 Some Applesoft BASIC Commands 42

2.6 Letting Your Computer Make Decisions 47
2.7 Some Programming Tips 58

3. More About Applesoft BASIC 63

3.1 Working With Tabular Data 63

3.2 Inputting Data 70

3.3 Advanced Printing 78

3.4 Gambling With Your Computer 83
3.5 Subroutines 89

4. Easing Programming Frustrations 97

4.1 Editing Program Lines 97

4.2 Flow Charting 101

4.3 Errors and Debugging 104

4.4 Appendix—Some Common Error Messages 107

5. Your Computer as a File Cabinet 109

5.1 What are Data Files? 109

5.2 Using An Apple Il Computer Diskette File 111
5.3 An Introduction to DOS 116

5.4 Data Files for Disk Users 118

6. An Introduction to Computer Graphics 127
6.1 Low Resolution Graphics Principles 127
6.2 High Resolution Graphics 134
6.3 Computer Art 134

7. Word Processing 137

7.1 What is Word Processing? 137

7.2 Manipulating Strings 138

7.3 Printer Controls and Form Letters 146

7.4 Using Your Computer as a Word Processor 150
7.5 A Do-lIt-Yourself Word Processor 153

8. Computer Games 157

8.1 Telling Time With Your Computer 157
8.2 Blind Target Shoot Game 162

8.3 Tic Tac Toe 167

9. Programming for Scientists 175

9.1 Integer and Real Constants 175

9.2 Variable Types 177

9.3 Mathematical Functions in Applesoft BASIC 179
9.4 Defining Your Own Functions 184

10. Computer-Generated Simulations 187
10.1 Simulation 187
10.2 Simulation of a Dry Cleaners 189

11. Software You Can Buy 197
11.1 VISICALC* 197
11.2 Buying Software 205

12. Some Other Applications of Your Computer 209
12.1 Computer Communications 209
12.2 Information Storage and Retrieval 212
12.3 Advanced Graphics 212
12.4 Connections to the Outside World 213

13. Where to Go From Here 215
13.1 Assembly Language Programming 215
13.2 Other Languages and Operating Systems 217

Answers to Selected Exercises 219
Index 244

* Trademark of Personal Software, Inc.

PREFACE

This book is designed to teach the computer novice how to use the
Apple Il computer. The development of the personal computer is one
of the most exciting breakthroughs of our time. Indeed, the inexpen-
sive personal computer promises to bring the computer revolution to
tens of millions of people, and promises to alter the way we think,
learn, work, and play. This book is designed to serve as an introduction
to this revolution. Accordingly, the book has two purposes. First, it
instructs the reader in the operation of the Apple Il computer, and
secondly, it illustrates some of the many ways it can be used.

We will guide the reader from the moment he or she turns on the
computer for the first time, and discuss the rudiments of programming
in the BASIC language. Since the book is designed as a tutorial, it
includes an exercise set with each section. This book may also be used
for self-study. Located in the text of each section are boxed questions
labelled ““Test Your Understanding.” These questions test you on con-
cepts introduced in each section and comprise a built-in study guide.
The answers to the “Test Your Understanding’ questions are found
after the exercises of each section.

We have covered more topics than those normally found in most
other books on elementary programming. This is due to our conviction
that the beginner should gain, in addition to learning BASIC program-
ming, an overview of as many real-life applications as possible. There-
fore, we have included many applied discussions, including a brief look
at word processing. These applications are designed to whet the read-
er’s interest and may be used as preludes to further study.

Most enthusiastic personal computer users quickly upgrade their
computers to include various equipment. We have included here an
introduction to Apple DOS, and a brief discussion on printers and
communications interfaces. This book closes with a discussion of possi-
ble topics for further study.

Any book owes its existence to the dedicated labors and inspirations
of many people. In our case, we have been inspired by our wives, Sandy
and Rose. Our children/grandchildren Melissa and Jonathan have en-
thusiastically joined us in applying our computers to a variety of tasks.
Their enthusiasm and fresh viewpoints have given us a glimpse into the
future of the computer revolution. Our sincere thanks to our review-
ers, David Molz, Paul Tebbe, Anne Gygi,Gerald Mellentin, K. W. Miller,
and)im Morey for their careful scrutiny of the manuscript and their

\%

many helpful suggestions. Thanks also go to Michael Rogers, produc-
tion editor and designer, for the professional manner in which he
managed the editing and production of this book. Finally, we would
like to thank Harry Gaines, President of the Brady Company, and David
Culverwell, Editor in Chief of the Brady Company, for their continued
support. Their friendship has enhanced our excitement and pleasure in
writing this book and can serve as a model for the ideal relationship
between publishers and authors.

Larry Joel Goldstein
Silver Spring, Maryland

Martin Goldstein
West Palm Beach, Florida

LIMITS OF LIABILITY AND
DISCLAIMER OF WARRANTY

The author and publisher of this book have used their best efforts in
preparing this book and the programs contained in it. These efforts
include the development, research, and testing of the theories and
programs to determine their effectiveness. The author and publisher
make no warranty of any kind, expressed or implied, with regard to
these programs or the documentation contained in this book. The au-
thor and publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the fur-
nishing, performance, or use of these programs.

vi

A First Look At
|Computers

1.1 INTRODUCTION

The computer age is barely thirty years old, but it has already had a
profound effect on our lives. Indeed, computers are now standard
equipment in the office, the factory, and even the supermarket. In the
last three or four years, the computer has even become commonplace
in the home, as people have purchased millions of computer games
and hundreds of thousands of personal computers. Computers are so
common today that it is hard to imagine even a single day in which a
computer will not somehow affect us.

In spite of the explosion of computer use in our society, most people
know very little about them. They view a computer as an “electronic
brain,” and do not know how a computer works, how it may be used, or
how it may greatly simplify various everyday tasks. This does not reflect
a lack of interest. Most people realize that computers are here to stay,
and are interested in finding out how to use them. If you are so in-
clined, then this book is for you!

This book is an introduction to personal computing for the novice.
You may be a student, teacher, homemaker, business person, or just a
curious individual. We assume that you have had little or no previous
exposure to computers and want to learn the fundamentals. We will
guide you as you turn on your computer for the first time. (There’s
really nothing to it!) From there, we will lead you through the funda-
mentals of talking with your computer in the Applesoft®* BASIC lan-

*Applesoft is a registered trademark of Apple Computer Corporation.

1

2 A FIRST LOOK AT COMPUTERS

guage. Throughout, we will provide exercises for you to test your un-
derstanding of the material. We will show you the many ways you can
use your computer. The exercises will suggest programs you can write.
Many of the exercises will be designed to give you insight into how
computers are used in business and industry. We will also suggest a
number of computer applications for your home. For good measure,
we will even build a few computer games!

WHAT IS PERSONAL COMPUTING?

In the early days of computing (the 1940’s and 1950's), the typical com-
puter was a huge mass of electronic parts which occupied several
rooms. In those days, it was often necessary to reinforce the floor of a
computer room, and to install special air conditioning so the computer
could function properly. An early computer was likely to cost several
million dollars. Over the years, the cost of computers has decreased
dramatically and, thanks to micro-miniaturization, their size has shrunk
even faster than their price.

The first “personal” computers appeared on the market a few years
ago. These computers were reasonably inexpensive, and were de-
signed to allow the average person to learn about the computer and
how to use it to solve everyday problems. These personal computers
were incredibly popular and several hundred thousand of them were
sold in three years.

The personal computer is not a toy. It is a genuine computer which
has most of the features of its big brothers, the so-called “main-frame”’
computers, which still cost several million dollars. A personal computer
can be equipped with enough capacity to handle the accounting and
inventory control tasks of most small businesses. It can also perform
computations for engineers and scientists, and it can even be used to
keep track of home finances and personal clerical chores. It would be
quite impossible to give anything like a comprehensive list of the appli-
cations of personal computers. However, the following list suggests the
range of possibilities:

For the business person
Accounting
Record keeping
Clerical chores
Inventory
Cash management

INTRODUCTION 3

Payroll
Graph and chart preparation

For the home
Record keeping
Budget management
Investment analysis
Correspondence
Energy conservation
Home security

For the student
Computer literacy
Term paper preparation
Analysis of experiments
Preparation of graphs and charts
Project schedules
Storage and organization of notes

For the professional
Billing
Analysis of data
Report generation
Correspondence

For recreation
Computer games
Computer graphics
Computer art

As you can see, the list is quite comprehensive. If your interests are not
listed, don’t worry! There’s plenty of room for those of you who are just

plain curious about computers and wish to learn about them as a
hobby.

THE APPLE®Il COMPUTER*

This book will introduce you to personal computing using the Apple Il
Computer. This machine is an incredibly sophisticated device which
uses many of the features of its main-frame big brothers. Before we
begin discussing these particular features of the Apple®ll Computer, let
us discuss the features found in all computers.

*Apple Il is a registered trademark of Apple Computer Corporation.

4 AFIRST LOOK AT COMPUTERS

1.2 WHAT IS A COMPUTER?

At the heart of every computer is a central processing unit (or CPU)
which performs the commands you specify. This unit carries out arith-
metic, makes logical decisions and so forth. In essence, the CPU is the
“brain” of the computer. The memory of a computer lets it ““‘remem-
ber” numbers, words, and paragraphs, as well as the list of commands
you wish the computer to perform. The input unit allows you to send
information to the computer; the output unit allows the computer to
send information to you. The relationship of these four basic compo-
nents of a computer is shown in Figure 1-1.

In an Apple Il Computer, the CPU is contained in a tiny electronic
chip called a 6502 microprocessor. As a computer novice, it is not neces-
sary for you to know about the electronics of the CPU. For now, view
the CPU as a magic device somewhere inside the case of your computer
and don't give it another thought!

The input device of the Apple Il Computer is the computer keyboard.
We will discuss the special features of the keyboard in Section 1.3 (page
5). For now, think of the keyboard as a typewriter. By typing symbols
on the keyboard, you are inputting them to the computer.

The Apple Il Computer has a number of output devices. The most
basic is the “TV screen” (sometimes called the video monitor or video
display). You may also use a printer to provide output on paper. In
computer jargon, paper output is called hard copy.

There are four types of memory in an Apple 1| Computer: ROM, RAM,
cassette, and diskette. Each of these types of memory has its own advan-

INPUT
keyboard
Y
MEMORY o CENTRAL OUTPUT
ROM Cassette PROCESSING _ Sc.reen
RAM Diskette [UNIT Printer

Figure 1-1. The main components of a computer.

MEET YOUR APPLE 1l COMPUTER 5

tages and disadvantages. We will attempt to make the memory as versa-
tile as possible by combining the good features of each.

ROM stands for ““read only memory.” This type of memory can be
read by the computer (that is, the CPU), but you cannot record anything
in it. ROM is usually reserved for the computer language which the
CPU utilizes. This language will be discussed later. For now, just re-
member that ROM contains the information necessary for the com-
puter to understand your commands. This information is pre-recorded
in the factory and is permanently situated in ROM.

RAM stands for ““random access memory.” This is the memory which
you can write into. If you type characters on the keyboard, they are
stored in RAM. Similarly, the results of calculations are kept in RAM
awaiting output to you. There is an extremely important feature of RAM
which you should remember:

Important: If the computer is turned off, then RAM is erased.

Therefore, RAM may not be used to store data in permanent form.
Nevertheless, it is used as the computer’s main working storage be-
cause of its great speed. It takes about a millionth of a second to store
or retrieve a piece of data from RAM.

To make permanent copies of programs and data, we may use either
the cassette recorder or the diskette file. The cassette recorder is just a
tape recorder which allows recording of information in a form which
the computer can understand. The recording tape is the same sort you
use for musical recordings.

A diskette drive records information on flexible diskettes which re-
semble phonograph records. These diskettes, often called “floppy
disks,” can store several hundred thousand characters each! (A double-
spaced typed page contains about 3,000 characters.) A diskette file can
provide access to information in much less time, on the average, than a
cassette recorder. On the other hand, diskette files are more costly
than cassette recorders.

The Apple Il Computer comes in both diskette and nondiskette
models. We will describe the operation of both versions.

1.3 MEET YOUR APPLE II COMPUTER

The best way to quickly master the operation of your computer is to
read this book while sitting at the computer and verifying the various

6 A FIRST LOOK AT COMPUTERS

Figure 1-2. The Apple Il Computer.

statements as they come up. So why not have a seat in front of your
Apple Il Computer? If your computer is not conveniently available,
refer to Figures 1-2 and 1-3.

Begin by examining the keyboard. Note that it is similar to a type-
writer keyboard, with a few important differences. Many typewriters
use the same key for the number 1 and a lower case letter I. For the
computer, however, spellings must not allow for any confusion; there
are separate keys for these two symbols. Similarly, it is very easy to
confuse the capital letter O (‘oh’) and the number 0 (zero) For this
reason, a computer specialist usually writes zero with a slash through
it: 0. To prevent possible confusion, you should do likewise.

Note that the keyboard has a number of specialized keys which are
not on a standard typewriter keyboard. We will discuss these keys one
at a time, but first let’s turn the computer on. Turn on the power to the
video display and then turn on the power to the computer itself. Then
push the RESET key. The computer will display a copyright notice and
two symbols:

MEET YOUR APPLE I| COMPUTER 7

(Cursor ?

The computer is now awaiting your instructions! Strike a few keys to
get the feel of the keyboard. Note that as you type, the corresponding
characters will appear on the screen. Note, also, how the small white
box travels along the typing line. This dash is called the cursor. It always
sits at the location where the next typed character will appear. Note the
character 1. This is the Applesoft BASIC prompt which indicates that the
computer language (called Applesoft BASIC) is ready to accept your
instructions.

Applesoft BASIC Prompt

As you type, you should notice the similarities between the Apple Il
Computer keyboard and that of a typewriter. However, you should also
note the differences. At the end of a typewriter line you return the
carriage, either manually or, on an electric typewriter, with a carriage
return key. Of course, your screen has no carriage to return. However,
you still must tell the computer that you are ready to move on to the
next line. This is accomplished by hitting the RETURN key. If you de-
press the RETURN key, the cursor will then return to the next line and
position itself at the extreme left side of the screen. The RETURN key
also has another function. RETURN signals the computer to accept the
line just typed. Until you hit the RETURN key, as far as the computer is
concerned, the line you just typed does not exist!

Keep typing until you are at the bottom of the screen. If you hit
RETURN, the entire contents of the screen will move up by one line and

Figure 1-3. The Apple Il Computer keyboard.

8 A FIRST LOOK AT COMPUTERS

the line at the top of the screen will disappear. This movement of lines
on and off the screen is called scrolling.

As you may have already noticed, the computer will respond to some
of your typed lines with error messages. Don’t worry about these now.
The computer has been taught to respond only to certain typed com-
mands. If it encounters a command that it doesn’t recognize, it will
announce this fact with an error message. It is extremely important for
you to realize that these errors will not harm the computer. In fact,
there is little you can do to hurt your computer (except by means of
physical abuse, of course). Don’t be intimidated by the occasional slaps
on the wrist handed out by your computer. Whatever happens, don’t
let these “‘slaps” stop you from experimenting. The worst that can
happen is that you might have to turn your computer off and start all
over!

By this time, your screen should look pretty cluttered. To clear it,
type HOME and then press RETURN. All characters on the screen will be
erased and only the cursor will remain. The cursor is positioned in the
upper left corner of the screen, its so-called “home’ position.

TEST YOUR UNDERSTANDING 1* (answers on page 9)

a. Type your name on the screen.
b. Erase the screen.

Unless you are a superb typist (most of us are at the other extreme!),
you will eventually make typing errors. Let’s discover how to correct
them. Type a few characters, but don't hit the RETURN key. Now hit the
backspace key. (This is the key labelled «<-.) Note that this key causes
the cursor to backspace, one space at a time, erasing the characters it
passes over. This is another difference between a typewriter and a
computer keyboard. Note, however, that you may use the backspace to
correct lines only if they have not been sent to the computer via the
RETURN key.

There are other ways to correct typing errors, but for now let us be
content with the methods discussed above.

*Answers to the TEST YOUR UNDERSTANDING questions follow the exercises of the
section. See page 9.

MEET YOUR APPLE || COMPUTER 9

EXERCISES

Type the following expressions on the screen.

exercise, clear the screen.

1.

O N W

10 HELLO! I'M YOUR NEW OWNER 2
10 PRINT 3+7 4
20 5% OF 68 6.
10 X=5: PRINT X 8
10 LET X=10 10

20 LET Y=50.35

After each numbered

. 10 ARITHMETIC
. 20 LET A=3-5

10 IF 38>-5

. 20 IF X>0 THEN 50
. 200 Y=X*2-5

300 PRINT Y,“Y”

ANSWERS TO TEST YOUR UNDERSTANDING 1

a. Type your name, ending the line with RETURN.
b. Type HOME followed by RETURN.

., .
\
(

Getting Started in

' Applesoft BASIC

2.1 COMPUTER LANGUAGES AND
PROGRAMS

In Chapter One we learned how to manipulate the keyboard and dis-
play screen of the Apple Il Computer . Let’s now learn how to commu-
nicate instructions to the computer.

Just as humans use languages to communicate with one another,
computers use languages to communicate with other electronic de-
vices (such as printers), human operators, and other computers. There
are hundreds of computer languages in use today. However, the most
common one for microcomputers is called BASIC (Beginners All Pur-
pose Symbolic Instructional Code). This is the best computer language
to learn first since it is the most elementary computer language used by
your Apple Il Computer. The first version of BASIC (not Applesoft) was
developed especially for computer novices by John Kemeny and
Thomas Kurtz at Dartmouth College. In the next few chapters, we will
concentrate on learning the fundamentals of Applesoft BASIC. In the
process, we will learn a great deal about the way in which a computer
may be used to solve problems.

Many people think of a computer as an “‘electronic brain”” which
somehow has the power of human thought. This is very far from the
truth. The electronics of the computer and the rules of the Applesoft
BASIC language allow it to recognize a very limited vocabulary, and to
take various actions based on the data which is given to it. It is very

11

12 GETTING STARTED IN APPLESOFT BASIC

important to recognize that the computer does not have ‘““common
sense.” The computer will attempt to interpret whatever data you in-
put. If what you input is a recognizable command, the computer will
perform it. It does not matter that the command makes no sense in a
particular context. The computer has no way to make such judgments.
It can only do what you instruct it to do. Because of the computer’s
inflexibility in interpreting commands, you must tell the computer ex-
actly what you want it to do. Do not worry about confusing the com-
puter. If you communicate a command in an incorrect form, you won’t
damage the machine in any way! In order to make the computer do our
bidding, it is necessary to carefully learn its language. That is our goal.

Let’s begin to learn something about Applesoft BASIC. Assume that
you have followed the start-up instructions of the last chapter and the
computer shows that it is ready to accept further instructions by dis-
playing the Applesoft BASIC prompt:

1

From this point on, a typical session with your computer might go like
this:

1. Type in a series of instructions in Applesoft BASIC. Such a series of
instructions is called a program.

2. Locate and correct any errors in the program.

3. Tell the computer to carry out the series of instructions in the
program. This step is called running the program.

4. Obtain the output requested by the program.

5. Either: (a) run the program again; or (b) repeat steps 1-4 for a new
program; or (c) end the programming session (turn off the com-
puter and go have lunch).

To fully understand what is involved in these five steps, let us con-
sider a particular example. Suppose that you want the computer to add
5 and 7. First, you would type the following instructions:

10 PRINT 5+7
20 END

This sequence of two instructions constitutes a program to calculate 5 +
7. Note that as you type the program the computer records your
instructions, but does not carry them out. As you are typing a program,
the computer provides you with an opportunity to change, delete, and
correct instruction lines. (More on how to do this later.) Once you are

COMPUTER LANGUAGES AND PROGRAMS 13

content with your program, tell the computer to run it (that is, to
execute the instructions) by typing the command*:

RUN

The computer will run the program and display the desired answer:
12

If you wish the computer to run the program a second time, type
RUN again.

Running a program does not erase it from RAM. Therefore, if you
wish to add instructions to the program or change the program, you
may continue typing just as if the RUN command had not intervened.
For example, if you wish to include in your program the problem of
calculating 5 — 7, type the additional line

15 PRINT 5—7

To see the program currently in memory, type LIST (no line number),
then hit the RETURN key. The program consists of the following three
lines, now displayed on the screen:

10 PRINT 5+7
15 PRINT 5—7
20 END

Note how the computer puts line 15 in proper sequence. If we now
type RUN again, the computer will display the two answers

12

-2
In the event that you now wish to go on to another program, type the
command

NEW
This erases the previous program from RAM and prepares the computer

to accept a new program. You should always remember the following
important fact

RAM can contain only one program at a time.

*Don’t forget to end the line by pressing the RETURN key.

14 GETTING STARTED IN APPLESOFT BASIC

TEST YOUR UNDERSTANDING 1 (answers on page 14)

a. Write and type in a BASIC program to calculate 12.1 + 98 +
5.32.

b. Run the program of a.
c. Erase the program of a. from RAM.
d. Write a program to calculate 48.75 — 1.674.

e. Type in and run the program of d.

Applesoft BASIC on the Apple Il Computer operates in two distinct
modes. In command mode, the computer accepts typed program lines
and commands (like RUN and NEW) used to manipulate programs. The
computer identifies a program line by its line number. Program lines are
not immediately executed. Rather, they are stored in RAM until you tell
the computer what to do with them. On the other hand, commands are
executed as soon as they are given.

In the execute mode, the computer runs a program. In this mode, the
screen is under control of the program.

When you turn the computer on it is automatically in command
mode. The command mode is indicated by the presence of the] prompt
on the screen. The RUN command puts the computer into execute
mode. After you run the program the computer redisplays the] prompt
indicating that it is back in command mode.

The computer is a stern taskmaster! It has a very limited vocabulary
(Applesoft BASIC) and this vocabulary must be used according to very
specific rules concerning the order of words, punctuation, and so
forth. However, Applesoft BASIC allows for some freedom of expres-
sion. For example, any extra spaces are ignored. Thus, Applesoft BASIC
will interpret all of the following instructions as the same:

10 PRINT A

10 PRINT A
10 PRINT A

ANSWERS TO TEST YOUR UNDERSTANDING 1

a. 10 PRINT 12.1+98+5.32
20 END

b. Type RUN

ELEMENTARY APPLESOFT BASIC PROGRAMS 15

c. Type NEW

d. 10 PRINT 48.75—1.674
20 END

e. Type in the program followed by RUN

2.2 ELEMENTARY APPLESOFT
BASIC PROGRAMS

In learning to use a language, you must first learn the alphabet of the
language. Next, you must learn the vocabulary of the language. Finally,
you must study the way in which words are put together into sentences.
In learning the Applesoft BASIC language, we will follow the progres-
sion just described. In Chapter One, we learned about the characters of
the Apple Il keyboard. These characters are the alphabet of Applesoft
BASIC. Let us now learn some basic vocabulary. The simplest ““‘words”
are the so-called constants.

APPLESOFT BASIC CONSTANTS

Applesoft BASIC allows us to manipulate numbers and text. The rules
for manipulating numerical data differ from those for handling text,
however. In Applesoft BASIC we distinguish between these two types
of data as follows: a numeric constant is a number and a string constant is
a sequence of keyboard characters, which may include letters, num-
bers, or any other keyboard symbols. The following are examples of
numeric constants:

5, =2, 3.145, 23456, 456.78345676543987, 27134566543
The following are examples of string constants:
“John”, ““Accounts Receivable’’, ““$234.45 Due"”’, “‘Dec. 4,1981"

Note that string constants are always enclosed in quotation marks. In
order to avoid vagueness, quotation marks may not appear as part of a
string constant. (In practice, an apostrophe ' should be used as a substi-
tute for " within a string constant.) Although numbers may appear
within a string constant, you cannot use such numbers in arithmetic.
Only numbers not enclosed by quotation marks may be used for arith-
metic.

16 GETTING STARTED IN APPLESOFT BASIC

For certain applications, you may wish to specify your numeric con-
stants in exponential format. This will be especially helpful in the case of
very large and very small numbers. Consider the number
15,300,000,000. It is very inconvenient to type all the zeros. This large
number can be written in handy shorthand as 1.53E10. The 1.53 indi-
cates the first three digits of the number. The E10 means that you move
the decimal point in the 1.53 to the right 10 places. Similarly, the num-
ber —237,000 may be written in the exponential format as —2.37E5. The
exponential format may also be used for very small numbers. For exam-
ple, the number .00000000054 may be written in exponential format as
5.4E—10. The —10 indicates that the decimal point in 5.4 is to be moved
10 places to the left.

TEST YOUR UNDERSTANDING 1 (answers on page 24)
a. Write these numbers in exponential format: .00048, —1374.5

b. Write these numbers in decimal format: —9.7E3, 9.7E-3,
-9.7E-3

We will say more about constants later. For example, we will describe
the number of digits of accuracy you can get, how to round off num-
bers, and so forth. Right now, you know more than enough to get
started. So instead of concentrating on the fine points now, let’s learn
enough to make our computer do something.

APPLESOFT BASIC PROGRAMS

Let us look again at the Applesoft BASIC program in Section 2.1 (page
12), namely:

dm PRINT 5+7
20 END-=
end of program

ELEMENTARY APPLESOFT BASIC PROGRAMS 17

This program illustrates two very important features common to all
Applesoft BASIC programs:

1. The instructions of a program must be numbered. Each line must
start with a line number. The computer executes instructions in
order of increasing line number.

2. The END instruction identifies the end of the program. On en-
countering this instruction, the computer stops running the pro-
gram and displays].

Note that line numbers need not be consecutive. For example, it is
perfectly acceptable to have a program whose line numbers are 10, 23,
47,55, or 100. Also note that it is not necessary to type instructions in
their numerical order. You could type line 20 and then go back and type
line 10. The computer will sort out the lines and rearrange them accord-
ing to increasing number. This feature is especially helpful in case you
accidentally omit a line while typing your program.

Here is another important fact about line numbering. If you type two
lines having the same line number, the computer erases the first ver-
sion and remembers the second version. This feature is very useful for
correcting errors: if a line has an error, just retype it!

Your Apple Il Computer will perform all the standard calculations
that can be done with a calculator. Since most people are familiar with
the operation of a calculator, let us start by writing programs to solve
various arithmetic problems.

Most arithmetic operations are written in customary fashion. For ex-
ample, addition and subtraction are written for the computer in the
usual way:

5+4,9-8

Multiplication, however, is typed using the symbol * , which shares the
“:" key. Therefore, the product of 5 and 3 is typed as:

5*3
Division is typed using /. Therefore, 8.2 divided by 15 is typed as:
8.2/15

Example 1. Write an Applesoft BASIC program to calculate the sum of
54.75, 78.83, and 548.

Solution. The sum is indicated by typing
54.75+78.83+548

18 GETTING STARTED IN APPLESOFT BASIC

The Applesoft BASIC instruction for printing data on the screen is
PRINT. So we write our program as follows:

10 PRINT 54.75+78.83+548
20 END

Applesoft BASIC carries out arithmetic operations in a special order.
It scans an expression and carries out all multiplication and division
operations first, proceeding in left-to-right order. 1t then returns to the
left side of the expression and performs addition and subtraction, also
in a left-to-right order. If parentheses occur, these are evaluated first
following the same rules stated above. If parentheses occur within pa-
rentheses, the innermost parentheses are evaluated first.

Example 2. What are the numerical values which Applesoft BASIC will
calculate from these expressions?

@ 6+ 7)/2 (b) 5+ 712

() 5+ 7*3/2 (d) 5+ 7*3)12
Solution. (a) The computer first applies its rules for the order of calcula-

tion to determine the value in the parentheses, namely 12. It then
divides 12 by 2 to obtain 6.

(b) The computer scans the expression from left to right performing
all multiplication and division in the order encountered. First it divides
7 by 2 to obtain 3.5. It then rescans the line and performs all additions
and subtractions in order. This gives

5+ 3.5 =285

(c) The computer first performs all multiplication and division in
order:

5+ 10.5
Now it performs addition and subtraction to obtain 15.5.

(d) The computer calculates the value of all parentheses first. In this
case, it computes 5 + 7*3 = 26. (Note that it does the multiplication
first!) Next it rescans the line which now looks like

26/2

It performs the division to obtain 13.

TEST YOUR UNDERSTANDING 2 (answer on page 24)
Calculate 5+3/2+2 and (5+3)/(2+2).

ELEMENTARY APPLESOFT BASIC PROGRAMS 19

Example 3. Write an Applesoft BASIC program to calculate the quantity

22 X18+34 x11 - 125 %X 8
27.8

Solution. Here is the program:

10 PRINT (22*18+34*11—-12.5*8)/27.8
20 END

Note that we used parentheses in line 10. They tell the computer that
the entire quantity in parentheses is to be divided by 27.8. If we had
omitted the parentheses, the computer would divide —12.5*8 by 27.8
and add 22*18 and 34*11 to the result.

TEST YOUR UNDERSTANDING 3 (answers on page 24)
Write Applesoft BASIC programs to calculate:
a. (A X3+5X8+7X9YPN(7 X9+4X3+8X7)) X48.7
b. 27.8 % of (112 + 38 + 42)
c. The average of the numbers 88, 78, 84, 49, 63

PRINTING WORDS

So far, we have used the PRINT instruction only to display the answers
to numerical problems. However, this instruction is very versatile. It
also allows us to display string constants. For example, consider this
instruction:

10 PRINT “PATIENT HISTORY”
During program execution, this statement will create the following
display:

PATIENT HISTORY

In order to display several string constants on the same line, separate
them by commas in a single PRINT statement. For example, consider
the instruction

10 PRINT “AGE”, ““BIRTHPLACE”
It will cause two words to be printed as follows:
AGE BIRTHPLACE

20 GETTING STARTED IN APPLESOFT BASIC

Both numeric constants and string constants may be included in a sin-
gle PRINT statement, for example

100 PRINT ““AGE”, 65.43

Here is how the computer determines the spacing on a line. Each line
is divided into print zones. Each print zone consists of 16 spaces. By
placing a comma in a PRINT statement, you are telling the computer to
start the next string of text at the beginning of the next print zone. Thus,
for example, the two words above, AGE and BIRTHPLACE, begin in
columns 1, and 17, respectively. (See Figure 2-1.) Note that the third
print zone (positions 33—40) is available only if nothing is printed in
print positions 24-32. Moreover, to use print zone 2, you must leave
print position 32 blank.

TEST YOUR UNDERSTANDING 4 (answer on page 24)
Write a program to print the following display.

NAME
LAST FIRST MIDDLE
SMITH JOHN DAVID

Example 4. Suppose thatadistributor of office supplies sells 50 chairs and
five desks. The chairs cost $59.70 each and are subject to a 30 percent
discount. The desks cost $247.90 each and are also subject to a 30 percent
discount. Prepare a bill for the shipment.

Solution. Let us insert two headings on our bill: Item and Cost. We then
print two lines, corresponding to the two types of items shipped. Fi-
nally, we calculate the total due as shown here.

10 PRINT “ITEM”,“COST”

20 PRINT

30 PRINT ‘“CHAIR”,50%(59.70—.3*59.70)

40 PRINT “DESK”, 5*(247.90—.3*247.90)

50 PRINT

60 PRINT “TOTAL DUE"”,50*(59.70—-.3*59.70)+5*(247.90—.3*247.90)

Note the PRINT statements in lines 20 and 50. They specify that a blank

1. 16 17... 3233... 40

Print Zone 1 Print Zone 2 Print Zone 3

Figure 2-1. Print zones.

ELEMENTARY APPLESOFT BASIC PROGRAMS 21

line is to be printed. If we now type RUN (followed by RETURN), the
screen will look like this:

10 PRINT “ITEM”,“COST”

20 PRINT

30 PRINT “CHAIR"”,50*(59.70—.3*59.70)

40 PRINT “DESK”, 5*(247.90—.3*247.90)

50 PRINT

60 PRINT “TOTAL DUE”,50*(59.70—.3*59.70)+5*(247.90—.3*247.90)
70 END

RUN

ITEM COST
CHAIR 2089.50
DESK 867.65
TOTAL DUE 2957.15

You may think that the above invoice is somewhat sloppy because the
columns of figures are not properly aligned. Patience! We will learn to
align the columns after we have learned a bit more programming.

TEST YOUR UNDERSTANDING 5 (answer on page 24)

Write a computer program which creates the following display.

BUDGET-APRIL

FOOD 387.50

CAR 123.71

GAS 100.00

UTILITIES 146.00

ENTERTAINMENT 100.00

TOTAL (Calculate total)
EXPONENTIATION

Suppose that A is a number and N is a positive whole number (this
means that N is one of the numbers 1, 2, 3,4, . . .). Then A raised to the
Nth power is the product of A times itself N times. This quantity is

22 GETTING STARTED IN APPLESOFT BASIC

usually denoted in mathematics texts as AN, and the process of calculat-
ing it is called exponentiation. For example,

23 = 2*2*2 = 8, 57 = 5*5*5*5*5*5*5 = 78125
It is possible to calculate AN by repeated multiplication. However, if N is
large, this can be tiresome to type. Applesoft BASIC provides a shortcut
for typing this function. Exponentiation is denoted by the symbol *,
which is produced by hitting the key with the upward-pointing arrow
(this symbol shares the “N” key at the top of the keyboard). For
example, 23 is denoted 2'3. The operation of exponentiation takes

precedence over multiplication and division. This is illustrated in the
following example.

Example 5. Determine the value which Applesoft BASIC assigns to this
expression:

20*3 — 5*2/\3
Solution. The exponentiation is performed first to yield:

20*3 — 5*8 = 60 — 40
=20

TEST YOUR UNDERSTANDING 6 (answer on page 24)

Evaluate the following first manually and then by an Apple 11 Com-
puter program.

a. 24 x 33

b. 22 x 33 —12%32 x 2

EXERCISES (answers on page 219)

Write Applesoft BASIC programs to calculate the following quantities.
1.57 + 23 + 48
2. 57.83 X (48.27 — 12.54)
3. 127.86/38

4. 365/.005 + 1.02°

5

. Make a table of the first, second, and third powers of the num-
bers 2, 3, 4, 5, and 6. Put all first powers in a column, all second
powers in another column, and so forth.

6.

7.

ELEMENTARY APPLESOFT BASIC PROGRAMS 23

Mrs. Anita Smith visited her doctor regarding a broken leg. Her
bill consists of $45 for removal of the cast, $35 for therapy, and $5
for drugs. Her major medical policy will pay 80 percent directly to
the doctor. Use the computer to prepare an invoice for Mrs.
Smith.

A school board election is held to elect a representative for a
district consisting of Wards 1, 2, 3, and 4. There are three candi-
dates, Mr. Thacker, Ms. Hoving, and Mrs. Weatherby. The tallies
by candidate and ward are as follows.

Ward | Ward 2 Ward 3 Ward 4

Thacker 698 732 129 487
Hoving 148 928 246 201
Weatherby 379 1087 148 641

Write an Applesoft BASIC computer program to calculate the
total number of votes achieved by each candidate, as well as the
total number of votes cast.

Describe the output from each of these programs.

8.

10.

10 PRINT 8*2—-3*(2"4—10)
20 END

. 10 PRINT “SILVER",”GOLD"”,”COPPER"

20 PRINT 327,448,1052
30 END

10 PRINT , “GROCERIES”,"”MEATS”
20 PRINT “MON"’, ““1,245","2,348"
30 PRINT “TUE", ** 248" ,'3,459"

40 END

Convert the following numbers to exponential format.

11.
12.
13.
14.
15.
16.

23,000,000

175.25

—200,000,000

.00014

—.000000000275
53,420,000,000,000,000

24 GETTING STARTED IN APPLESOFT BASIC

Convert the following numbers in exponential format to standard
format.

17. 1.59E5

18. —20.3456E6
19. —7.456E—-12
20. 2.39456E—18

ANSWERS TO TEST YOUR UNDERSTANDING 1,2,3,4,5,
and 6

1: a. 4.8E—4, —1.3745E3
b. —9700, .0097, —.0097

2: 85,2

3: a. 10 PRINT ((4*3+5*8+7*9)/(7*9+4*3+8*7))*48.7
20 END
b. 10 PRINT .278*(112+38+42)
20 END
c. 10 PRINT (88+78+84+49+63)/5
20 END

4: 10 PRINT ,”NAME"
20 PRINT
30 PRINT “LAST”,”MIDDLE","“FIRST"”
40 PRINT
50 PRINT “SMITH"”, “JOHN",”DAVID"
60 END

5: 10 PRINT ,” BUDGET-APRIL"”
20 PRINT “FOOD", 387.50
30 PRINT “CAR", 123.71
40 PRINT “GAS”, 100.00
50 PRINT “UTILITIES"”, 146.00
60 PRINT “ENTERTAINMENT", 100.00
70 PRINT , “_____ "’
80 PRINT “TOTAL", 387.50+123.71+146.00+100.00
90 END

6: a. 432
b. 76

GIVING NAMES TO NUMBERS AND WORDS 25

2.3 GIVING NAMES TO NUMBERS
AND WORDS

In the examples and exercises of the preceding section, you probably
noticed that you were wasting considerable time retyping certain num-
bers over and over. Not only does this retyping waste time, it is also a
likely source for errors. Fortunately, such retyping is unnecessary if we
use variables.

A variable is a letter used to represent a number. Any letter of the
alphabet may be used as a variable. (There are other possible names for
variables. See below.) Possible variables are A, B, C, X, Y, or Z. At any
given moment, a variable has a particular value. For example, the vari-
able A might have the value 5 while B might have the value —2.137845.
One method for changing the value of a variable is through use of the
LET statement. The statement

10 LET A=7

sets the value of A equal to 7. Any previous value of A is erased. The LET
command may be used to set the values of a number of variables simul-
taneously. For instance, the instruction

100 LET C=18: D=23: E=2.718
assigns C the value 18, D the value 23, and E the value 2.718.

Once the value of a variable has been set, the variable may be used
throughout the program. The computer will insert the appropriate
value wherever the variable occurs. For instance, if A has the value 7
then the expression

A+5

is evaluated as 7 + 5 or 12. The expression
3*A — 10

is evaluated 3*7 — 10 = 21 — 10 = 11. The expression 2*A”2 is evaluated
2*77\2 = 2*49 = 98

TEST YOUR UNDERSTANDING 1 (answer on page 31)

Suppose that A has the value 4 and B has the value 3. What is the
value of the expression A”\2/2*B"\2?

26 GETTING STARTED IN APPLESOFT BASIC

Note the following important fact:

If you do not specify a value for a variable, Applesoft BASIC will
assign it the value 0.

Variables may also be used in PRINT statements. For example, the
statement

10 PRINT A

will cause the computer to print the current value of A (in the first print
zone, of course!). The statement
20 PRINT A,B,C

will result in printing the current values of A, B, and C in print zones 1,
2, and 3, respectively.

TEST YOUR UNDERSTANDING 2 (answer on page 31)

Suppose that A has the value 5. What will be the result of the
instruction:

10 PRINT A ,A72,2*AN2

Example 1. Consider the three numbers 5.71, 3.23, 4.05. Calculate their
sum, their product, and the sum of their squares (that is, the sum of
their second powers; such a sum is often used in statistics.).

Solution. Introduce variables A, B, and C and set them equal, respec-
tively, to the three numbers. Then compute the desired quantities.

10 LET A=5.71: B=3.23: C=4.05

20 PRINT “THE SUM IS”, A+B+C

30 PRINT “THE PRODUCT IS”, A*B*C

40 PRINT “THE SUM OF SQUARES IS”, A”"2+B"2+C"2
50 END

TEST YOUR UNDERSTANDING 3 (answer on page 31)

Consider the numbers 101, 102, 103, 104, 105, and 106. Write a
program which calculates the product of the first two, the first
three, the first four, the first five, and all sjx numbers.

GIVING NAMES TO NUMBERS AND WORDS 27

LET

5.781

A

Figure 2-2.The variable A.

The following mental imagery is often helpful in understanding how
Applesoft BASIC handles variables. When Applesoft BASIC first en-
counters a variable, let’s say A, it sets up a box (actually a memory
location) which it labels ““A”’. (See Figure 2-2.) In this box it stores the
current value of A. When you request a change in the value of A, the
computer throws out the current contents of the box and inserts the
new value.

Note that the value of a variable need not remain the same through-
out a program. At any point in the program, you may change the value
of a variable (with a LET statement, for example). If a program is called
on to evaluate an expression involving a variable, it will always use the
current value of the variable, ignoring any previous values the variable
may have had at earlier points in the program.

TEST YOUR UNDERSTANDING 4 (answer on page 31)

Suppose that a loan for $5,000 has an interest rate of 1.5 percent on
the unpaid balance at the end of each month. Write a program to
calculate the interest at the end of the first month. Suppose that at
the end of the first month, you make a payment of $150 (after the
interest is added). Design your program to calculate the balance
after the payment. (Begin by letting B = the loan balance, | = the
interest, and P = the payment. After the payment, the new balance
isB+1-P)

Example 2. What will be the output of the following computer program?

10 LET A=10: B=20

20 LET A=5

30 PRINT A+B+C, A*B*C
40 END

28 GETTING STARTED IN APPLESOFT BASIC

Solution. Note that no value for C is specified, so C = 0. Also note that
the value of A is initially set to 10. However, in line 20, this value is
changed to 5. So in line 30, A, B, and C have the respective values 5, 20,
and 0. Therefore, the output will be:

25 0

To the computer, the statement

LET A=
means that the current value of A is to be replaced with whatever ap-
pears to the right of the equal sign. Therefore, if we write

LET A=A+1
then we are asking the computer to replace the current value of A with

A + 1. So, if the current value of A is 4, the value of A after performing
the instruction is 4 + 1, or 5.

TEST YOUR UNDERSTANDING 5 (answer on page 31)
What is the output of the following program?

10 LET A=5.3
20 LET A=A+1
30 LET A=2*A
40 LET A=A+B
50 PRINT A

60 END

LEGAL VARIABLE NAMES

As we mentioned previously, you may use any letter of the alphabet as a
variable name. The Apple Il Computer is quite flexible concerning vari-
able names. Any sequence of up to 238 characters which begins with a
letter is a legal variable name. (For an exception, see below.) Therefore,
you may use variables named PAYROLL, TAX, REFUND, and BALANCE.
However, Applesoft BASIC will use only the first two characters to distin-
guish one name from another. Actually, not every sequence of characters
is a legal variable name. You must avoid any sequences of characters
which are reserved by Applesoft BASIC for special meanings. Examples
of such words are:

IF, ON, OR, TO

GIVING NAMES TO NUMBERS AND WORDS 29

Once you become familiar with Applesoft BASIC, it will be second
nature to avoid these and the other reserved words as variable names.

Note: A variable name must always start with a letter.

A variable name cannot begin with a number. For example, 1A isnot a
legal variable name.

So far, all of the variables we have discussed have represented nu-
merical values. However, Applesoft BASIC also allows variables to as-
sume string constants as values. The variables for doing this are called
string variables. These are denoted by a variable name followed by a
dollar sign. Thus, A$, B1$, and ZZ$ are all valid names of string vari-
ables. To assign a value to a string variable, we use the LET statement with
the desired value inserted in quotation marks after the equal sign. To
set A$ equal to the string “BALANCE SHEET”, we use the statement

LET A$=‘"BALANCE SHEET”

We may print the value of a string variable just as we print the value of a
numeric variable. For example, if A$ has the value just assigned, the
statement

PRINT A$

will result in the following screen output:
BALANCE SHEET

Example 3. What will be the output of the following program?

10 LET A$="'RECEIPTS”’:B$="EXPENSES”’
20 LET A=20373.10: B=17584.31
30 PRINT A$,B$

40 PRINT A,B
50 END
Solution.
RECEIPTS EXPENSES
20373.10 17584.31

Note that we have used the variables A and A$ (as well as B and B$) in
the same program. The variables A and A$ are considered different by
the computer.

30 GETTING STARTED IN APPLESOFT BASIC

REMARKS IN PROGRAMS

It is very convenient to explain programs using remarks. For one thing,
remarks make programs easier to read. Remarks also assist in finding
errors and making modifications in a program. To insert a remark in a
program, we may use the REM statement. For example, consider the
line

520 REM X DENOTES THE COST BASIS

Since the line starts with REM, it will be ignored during program exe-
cution.

MULTIPLE STATEMENTS ON A SINGLE LINE

Itis possible to put several Applesoft BASIC statements on a single line.
Just separate them by a colon. For example, instead of the two state-
ments:

10 LET A=5.784: B=3.571
20 PRINT A"2+B"2

we may use the single statement:

10 LET A=5.784: B=3.571 : PRINT A"\2+B"\2

To insert a remark on the same line as a program statement, use a colon
followed by a REM, as in this example:

10 LET A=PI*R"2 :REM A IS THE AREAR IS THE RADIUS

The REM statement causes the remainder of the line to be ignored by
the computer. In what follows, we will sprinkle comments liberally
throughout our programs so that they will be easier to understand.

TEST YOUR UNDERSTANDING 6 (answer on page 31)
What is the result of the following line?

10 LET A=7:B$="COST”:C$="TOTAL"
20 PRINT C$,B$
30 PRINT “=",A

GIVING NAMES TO NUMBERS AND WORDS 31

EXERCISES (answers on page 220)

In Exercises 1-6, determine the output of the given program.

1. 10 LET A=5:B=5 2. 10 LET AA=5
20 PRINT A+B 20 PRINT AA*B
30 END 30 END
3. 10 LET A1=5 4. 10 LET A=2: B=7: C=9
20 PRINT A1/2+5*AT1 20 PRINT A+B, A—C, A*C
30 END 30 END
5. 10 LET A$="JOHN JONES” 6. 10 LET X=11, Y=19
20 LET B$="AGE": C=38 20 PRINT 2*X
30 PRINT A$, B$, C 30 PRINT 3*Y
40 END 40 END
What is wrong with the following Applesoft BASIC statements?
7. 10 LET A="YOUTH" 8. 10 LET AA=-12
9. 10 LET A$=57 10. LET ZZ$= Address
11. 250 LET AAA=-9 12. 10000 LET 1A=—-2.34567

13. Consider the numbers 2.3758, 4.58321, 58.11. Write a program
which computes their sum, product, and the sum of their
squares.

14. A company has three divisions: Office Supplies, Computers, and
Newsletters. The revenues of these three divisions for the pre-
ceding quarter were, respectively, $346,712, $459,321, and
$376,872. The expenses for the quarter were $176,894, $584,837,
and, $402,195, respectively. Write a program which displays this
data on the screen, with appropriate explanatory headings. Your
program should also compute and display the net profit (loss)
from each division and the net profit (loss) for the company as a
whole.

ANSWERS TO TEST YOUR UNDERSTANDING 1, 2, 3, 4, 5,
and 6
1: 72
2: It prints the display:
5 25 50
3: 10 LET A=101:B=102:C=103:D=104:E=105:F=106
20 PRINT A*B
30 PRINT A*B*C

32 GETTING STARTED IN APPLESOFT BASIC

40 PRINT A*B*C*D

50 PRINT A*B*C*D*E
60 PRINT A*B*C*D*E*F
70 END

4: 10 LET B=5000: 1=.015: P=150.00
20 IN=1*B
30 PRINT “INTEREST EQUALS", IN
40 B=B+IN
50 PRINT ““ BALANCE WITH INTEREST EQUALS"”, B
60 B=B—-P
70 PRINT “BALANCE AFTER PAYMENT EQUALS”, B
80 END

5: 12.6
6: It creates the display:

TOTAL COST
= 7

2.4 DOING REPETITIVE OPERATIONS

Suppose that we wish to solve 50 similar multiplication problems. It is
certainly possible to type in the 50 problems one at a time and let the
computer solve them. However, this is a very clumsy way to proceed.
Suppose that instead of 50 problems there were 500, or even 5000.
Typing the problems one at a time would not be practical. If, however,
we can describe to the computer the entire class of problems we want
solved, then we can instruct the computer to solve them using only a
few Applesoft BASIC statements. Let us consider a concrete problem.
Suppose that we wish to calculate the quantities

12,22,3, ..., 102

That is, we wish to calculate a table of squares of integers from 1 to 10.
This calculation can be described to the computer as calculating N2,
where the variable N is allowed to assume, one at a time, each of the
values 1,2,3,. .. ,10. Here is a sequence of Applesoft BASIC state-
ments which accomplishes the calculations:

DOING REPETITIVE OPERATIONS 33

This is the
last value of N

This is the
first value of N

\
10 FOR N=1TO 10 lines 10-20-30 repeated
20 PRINT N*N } 10 times
30 NEXT N
40 END

The sequence of statements 10, 20, and 30 is called a loop. When the
computer encounters the FOR statement, it sets N equal to 1 and con-
tinues executing the statements. Statement 20 calls for printing N/2.
Since N is equal to 1, we have N2 = 172 = 1. So the computer will print
a 1. Next comes statement 30, which calls for the next N. This instructs
the computer to return to the FOR statement in 10, increase N to 2, and
to repeat instructions 20 and 30. This time, N2 = 2/'2 = 4, Line 20 then
prints a 4. Line 30 says to go back to line 10 and increase N to 3 and so
forth. Lines 10, 20, and 30 are repeated 10 times! After the computer
executes lines 10, 20, and 30 with N = 10, it will leave the loop and
execute line 40.

Type in the above program and give the RUN command. The output
will look like this:

1
4
9
16
25
36
49
64
81
100
1

TEST YOUR UNDERSTANDING 1 (answers on page 41)
a. Devise a loop allowing N to assume the values 3 to 77.

b. Write a program which calculates N2 for N = 3 to 77.

34 GETTING STARTED IN APPLESOFT BASIC

Let’s modify the above program to include on each line of output not
only N2, but also the value of N. To make the table easier to read, let’s
also add two column headings. The new program reads:

10 PRINT “N”, “N"2”

20 FORN=1TO 10
30 PRINT N,N*N

40 NEXT N
50 END

The output now looks like this:
N N2
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100
]

TEST YOUR UNDERSTANDING 2 (answer on page 42)
What would happen if we change the number of line 10 to 252

Let us now illustrate some of the many uses loops have by means of
some examples.

Example 1. Write an Applesoft BASIC program to calculate 1 + 2 + 3 +
. .+ 100.

Solution. Let us use a variable S (for sum) to contain the sum. Let us start
S at 0 and use a loop to successively add to S the numbers1,2,3,. . .,
100. Here is the program.

10 LET S=0

20 FOR N=1 TO 100 } These instructions

30 LET S=S+N repeated 100 times

40 NEXT N
50 PRINT S
60 END

When we enter the loop the first time, S = 0 and N = 1. Line 30 then
replaces Sby S + N, or 0 + 1. Line 40 sends us back to line 20, where the
value of N is now set equal to 2. In line 30, S (which is now 0 + 1) is
replaced by S + N, or 0 + 1 + 2. Line 40 now sends us back to line 20,

DOING REPETITIVE OPERATIONS 35

where N is now set equal to 3. Line 30 then sets Sequal to0 + 1 + 2 + 3.
Finally, on the 100th time through the loop, S is replaced by 0 + 1 + 2 +

. + 100, the desired sum. If we run the program, we derive the
output

5050
]

TEST YOUR UNDERSTANDING 3 (answer on page 42)

Write an Applesoft BASIC program to calculate 101 + 102 + . . . +
110.

TEST YOUR UNDERSTANDING 4 (answer on page 42)

Write an Applesoft BASIC program to calculate and display the
numbers 2, 22,23, . . ., 2/°20.

Example 2. Write a program to calculate the sum:
1TX2+2Xx3+3%x4+...+49 x50

Solution. We let the sum be contained in the variable S, like we did in
Example 1. The quantities to be added are just the numbers N*(N + 1)
forN =1,2,3,. .. ,49. So here is our program:

10 LET S=0

20 FOR N=1TO 49
30 LET S=S+N*(N+1)
40 NEXT N

50 PRINT S

60 END

Example 3. You borrow $7,000 to buy a car. You finance the balance for
36 months at an interest rate of one percent per month. Your monthly
payments are $232.50. Write a program which computes the amount of
interest each month, the amount of the loan which is repaid, and the
balance owed.

Solution. Let B denote the balance owed. Initially we have B equal to
7,000 dollars. At the end of each month let us compute the interest (1)
owed for that month, namely .01*B. For example, at the end of the first
month, the interest owed is .01*7000.00 = $70.00. Let P = 232.50 to
denote the monthly payment, and let R denote the amount repaid out

36 GETTING STARTED IN APPLESOFT BASIC

of the current payment. Then R = P — I. For example, at the end of the
first month, the amount of the loan repaid is 232.50 — 70.00 = 162.50.
The balance owed may then be calculated as B — R. At the end of the
first month, the balance owed is 7000.00 — 162.50 = 6837.50. Here is a
program which performs these calculations:

10 PRINT “INTEREST”,”BALANCE"”

20 LET B=7000

25 LET P=232.50

30 FOR M=1 TO 36:REM M IS MONTH NUMBER

40 LET 1=.01*B :REM CALCULATE INTEREST FOR MONTH
50 LET R=P—1 :REM CALCULATE REPAYMENT

60 LET B=B—R :REM CALCULATE NEW BALANCE

70 PRINT I,B

80 NEXT M

90 END

You should attempt to run this program. Notice that it runs, but it is
pretty useless because the screen will not contain all of the output.
Most of the output goes flying by before you can read it. One method
for remedying this situation is to press* CTRL and C as the output scrolls
by on the screen. This will pause execution of the program and freeze
the contents of the screen. To resume execution and unfreeze the
screen, type CONT and hit the RETURN key. The output will begin to
scroll again. To use this technique requires some manual dexterity.
Moreover, it is not possible to guarantee where the scrolling will stop.

TEST YOUR UNDERSTANDING 5

RUN the program of Example 3 and practice freezing the output on
the screen. It may take several runs before you are comfortable
with the procedure.

Let us now describe another method of adapting the output to our
screen size by printing only 12 months of data at one time. This amount
of data will fit since the screen contains 24 lines. We will use a second
loop to keep track of 12 month periods. The variable for the new loop
will be Y (for ““years’”), and Y will go from 0 to 2. The month variable will
be M as before, but now M will go only from 1 to 12. The month number

*The CTRL key should be depressed first and then held down while the C is depressed.

DOING REPETITIVE OPERATIONS 37

will now be 12*Y + M (the number of years plus the number of months).
Here is the revised program.

10 LET B=7000

15 LET P=232.50

20 FORY=0TO 2

30 PRINT “INTEREST”,“BALANCE”

40 FOR M=1TO 12

50 LET I=.01*B

60 LET R=P—1: REM ONE 12 MONTH PERIOD
70 LET B=B—R

80 PRINT 1B

90 NEXT M

100 STOP :REM HALTS EXECUTION

110 HOME :REM CLEAR SCREEN

120 NEXT Y :REM GOES TO NEXT 12 MONTHS
130 END

This program utilizes several new statements. In line 100, we use the
STOP statement. This causes the computer to stop execution of the
program. The computer remembers where it stops, however, and all
values of the variables are preserved. The STOP statement also leaves
unchanged the contents of the screen. You can take as long as you wish
to examine the data on the screen. When you are ready for the program
to continue, type CONT. The computer will resume where it left off.
The first instruction it encounters is in line 110. HOME clears the
screen. So, after being told to continue, the computer clears the screen
and goes on to the next value of Y—the next 12 months of data. Here is
a copy of the output. The underlined statements are those you type.

]

RUN

INTEREST BALANCE
70 6837.5
68.375 6673.375
66.73375 65076.0875
65.0760875 6340.18484
63.4018484 6171.08669
61.7108669 6000.29755
60.0029755 5827.80053
58.2780053 5653.57854
56.5357854 5477.61432
54.7761432 5299.89047
52.9989047 5120.38937
51.2038937 4939.09326

38

GETTING STARTED IN APPLESOFT BASIC

BREAK IN 100

]
CONT

INTEREST

49.3909326
47.5598419
45.7104404
43.8425448
41.9559702
40.0505299
38.1260352
36.1822955
34.2191185
32.2363097
30.2336728
28.2110095

BREAK IN 100

]
CONT

INTEREST
26.1681196
24.1048008
22.0208488
19.9160573
17.7902179
15.6431201
13.4745513
11.2842968
9.07213974
6.83786113
4.58126
2.30205215

BREAK IN 100

]

BALANCE

4755.98419
4571.04404
4384.25448
4195.59702
4005.05299
3812.60352
3618.22955
3421.91185
3223.63097
3023.36728
2821.10095
2616.81196

BALANCE
2410.48008
2202.08488
1991.60573
1779.02179
1564.31201
1347.45513
1128.42968
907.213974
683.7856113
458.123975
230.205214
7.26658106E—-03

Note that the data in the output is carried out to ten figures, even

though the problem deals with dollars and cents. We will look at the

problem of rounding numbers later. Also note the balance listed at the
end of month 36. It is in scientific notation. The —03 indicates that the

decimal point is to be moved three places to the left. The number listed

is .00726658106 or about .72 cents (less than one cent)! The computer
shifted to scientific notation since the usual notation (.00726658106)
requires more than ten digits. The computer made the choice of which
form of the number to display.

DOING REPETITIVE OPERATIONS 39

USING LOOPS TO CREATE DELAYS

By using a loop we can create a delay inside the computer. Consider
the following sequence of instructions:

10 FOR N=1 TO 3000
20 NEXT N

This loop doesn’t do anything! However, the computer repeats in-
structions 10 and 20 three thousand times! This may seem like a lot of
work. But not for a computer. To obtain a feel for the speed at which
the computer works, you should time this sequence of instructions.
Such a loop may be used as a delay. For example, when you wish to
keep some data on the screen without stopping the program, just build
in adelay. Here is a program which prints two screens of text. A delay is
imposed to give a person time to read the first screen.

10 PRINT “THIS IS A PROGRAM TO DISPLAY SALES”
20 PRINT “FOR THE YEAR TO DATE”

30 FOR N=1 TO 5000

40 NEXT N: REM DELAY LOOP

50 HOME

60 PRINT “YOU MUST SUPPLY THE PARAMETERS:”
70 PRINT “PRODUCT, TERRITORY, VOLUME”

80 END

Example 4. Use aloop to produce ablinking display for a security system.

Solution. Suppose that your security system is tied in with your com-
puter and the system detects that an intruder is in your warehouse. Let
us print out the message:

SECURITY SYSTEM DETECTS INTRUDER-ZONE 2

For attention, let us blink this message on and off by alternately printing
the message and clearing the screen.

10 FOR N=1 TO 2000

20 PRINT:PRINT:PRINT

30 PRINT ““SECURITY SYSTEM DETECTS INTRUDER-ZONE 2”
40 FOR K=1 TO 150

50 NEXT K

60 HOME

70 FOR K=1 TO 150

80 NEXT K

90 NEXT N

100 END

The loop in 40-50 is a delay loop to keep the message on the screen a
moment. Line 60 turns the message off, but the PRINT statement in line

40 GETTING STARTED IN APPLESOFT BASIC

30 almost immediately turns it back on. The message will blink 2000
times.

TEST YOUR UNDERSTANDING 6 (answer on page 42)

Write a program which blinks your name on the screen 500 times,
leaving your name on the screen for a loop of length 50 each time.

In all of our loop examples, the loop variable increased by one with
each repetition of the loop. However, it is possible to have the loop
variable change by any amount. For example, the instructions

10 FOR N=1 TO 5000 STEP 2

1000 NEXT N

define a loop in which N jumps by 2 for each repetition, so N will
assume the values:

1,3,57,9...,4999

Similarly, use of STEP .5 in the above loop will cause N to advance by .5
and assume the values:

1,15,2,2.5,3,3.5,4,45,. . ., 5000

It is even possible to have a negative step. In this case, the loop variable
will run backwards. For example, the instructions

10 FOR N=100 TO 1 STEP -1

100 NEXT N

will “count down” from N = 100 to N = 1 one unit at a time. We will
give some applications of such instructions in the Exercises.

TEST YOUR UNDERSTANDING 7 (answers on page 42)

Write instructions to allow N to assume the following sequences of
values:

a. 95,96.7,98.4, . .. ,112
b. 200, 199.5,199, . . . , 100

DOING REPETITIVE OPERATIONS 41

EXERCISES (answers on page 221)
Write Applesoft BASIC programs to compute the following quantities.

1.

+22+ 32+ ...+ 25

2.1+ (172) + (1722 . . . + (1/2)1©
3.
4
5

B+232+3+...+10°
L1+ 0172+ (173) + .. .+ (1/100)
. Write a program to compute N2, N3, N* for N=1, . . . , 12. The
format of your output should be as follows:
N N2 N3
1
2
3
12

. Suppose that you have a car loan whose current balance is

$4,000.00. The monthly payment is $125.33 and the interest is one
percent per month on the unpaid balance. Make a table of the
interest payments and balances for the next 12 months.

. Suppose you deposit $1,000 on January 1 of each year into a sav-

ings account paying 10 percent interest. Suppose that the interest
is computed on January 1 of each year, based on the balance for
the preceding year. Calculate the balances in the account for each
of the next 15 years.

A stock market analyst predicts that Tyro Computers, Inc. will
achieve a 20 percent growth in sales in each of the next three
years, but profits will grow at a 30 percent annual rate. Last year’s
sales were $35 million and last year’s profits were $5.54 million.
Project the sales and profits for the next three years, based on the
analyst’s prediction.

ANSWERS TO TEST YOUR UNDERSTANDING 1, 2, 3, 4, 6,

and 7

1: a. TI0 FORN=3T077 b. 10 FOR N=3 TO 77
20 PRINT N2
30 NEXT N

100 NEXT N 40 END

42 GETTING STARTED IN APPLESOFT BASIC

2: The heading
N N2
would be printed before each entry of the table.

3: 10 S=0
20 FOR N=101 TO 110
30 S=S+N
40 NEXT N
50 PRINT S
60 END

4: 10 FORN=1TO 20
20 PRINT 2N
30 NEXT N
40 END

6: 10 FOR N=1 TO 500
20 PRINT “(YOUR NAME)”
30 FOR K=1TO 50
40 NEXT K
50 HOME
60 FOR K=1 TO 50:NEXT K
70 NEXT N
80 END

7: a. 10 FOR N=95 TO 112 STEP 1.7
b. 20 FOR N=200 TO 100 STEP —.5

2.5 SOME APPLESOFT BASIC COMMANDS

Thus far, most of our attention has been focused on learning state-
ments to insert inside programs. Let us now learn a few of the com-
mands available for manipulating programs and the computer. The
NEW command, previously discussed, is in this category. Remember
the following facts about Applesoft BASIC commands:

1. Commands are typed without using a line number.
2. You must hit the RETURN key after typing a command.

3. A command may be given whenever the computer is in com-
mand mode. (Recall that when the computer first enters the

SOME APPLESOFT BASIC COMMANDS 43

command mode, it displays the] message. The computer re-
mains in the command mode until a RUN command is given.)

4. The computer executes commands as soon as they are re-
ceived.

LISTING A PROGRAM

To obtain a list of all statements of the current program in RAM, you
may type the command

LIST

For example, suppose that RAM contains the following program.

10 PRINT 5+7,5-7
20 PRINT 5*7,5/7
30 END

(This program may or may not be currently displayed on the screen.) If
you type LIST, then the above three instruction lines will be displayed,
followed by the] message.

In developing a program, you will undoubtedly find it necessary to
input lines in non-consecutive order and to correct lines already input.
If this happens, the screen will usually not indicate the current version
of the program. Typing LIST every so often will assist in keeping track of
what has been changed. LISTing is particularly helpful in checking a
program or determining why a program won't run.

Note that the Apple Il Computer screen can display up to 24 lines of
text. This means you can display, at most, 24 program statements at one
time. Therefore, you must list long programs a section at a time. For
example, to LIST only those statements with line numbers from 100 to
240, we use the command:

LIST 100-240

In a similar fashion, we may list any collection of consecutive program
lines.

There are several other variations of the LIST command. To list the
program lines from the beginning of the program to line 75, use the
command

LIST -75

44 GETTING STARTED IN APPLESOFT BASIC
Similarly, to list the program lines from 100 to the end of the program,
use the command

LIST 100-

To list line 100, use the command
LIST 100

TEST YOUR UNDERSTANDING 1 (answers on page 46)
Write a command to:

a. List line 200

b. List lines 300-330

c. List lines 300 to the end

Test out these commands with a program.

DELETING PROGRAM LINES

When typing a program or revising an existing program, it is often
necessary to delete lines which are already part of the program. One
simple way is to type the line number followed by RETURN. For exam-
ple,

275
(followed by hitting the RETURN key) will delete line 275. The DEL

command may also by used for the same purpose. For example, we may
delete line 275, using the command

DEL 275,275

Similarly, to delete the lines 500 to 700 inclusive, use the command
DEL 500,700

If the program does not have a line 700, the computer will determine
the last line before 700 and will delete from 500 to that line, inclusive.

TEST YOUR UNDERSTANDING 2 (answers on page 46)
What is wrong with the following commands?

a. DEL 450,

b. LIST 450-

c. DEL 300,200

SOME APPLESOFT BASIC COMMANDS 45

SAVING A PROGRAM

Once you have typed a program into RAM, you may save a copy on
cassette or diskette. At any future time, you may read the cassette or
diskette copy back into RAM. At that point, you may re-execute the
program, modify it, or add to it. For the sake of concreteness, suppose
that the following program is in RAM:

10 PRINT 5+7
20 END

Saving a Program on Diskette. We must first assign the program a name,
which may consist of any string of up to 30 letters or numbers. Suppose
that we choose the name RETAIN for our program. We may save this
program on the diskette in either disk drive. To save RETAIN on drive 1,
for example, we would use the command:

SAVE RETAIN, D1

When the computer finishes writing a copy of the program onto the
designated diskette, it will display the] prompt. Saving a program does
not alter the copy of the program in RAM.

To read a program from diskette into RAM, we use the LOAD com-
mand. For example, to read RETAIN from the diskette in drive 2, we use
the command:

LOAD RETAIN, D2

Important Note. In order to SAVE or LOAD programs on diskette, it is
first necessary to initialize the Disk Operating System (DOS). To see
how this is done, consult Chapter 4.

Saving a Program on Cassette. To save RETAIN on cassette, we position
the tape on a blank segment, and push the PLAY and RECORD buttons
of the cassette recorder simultaneously. Next, type the command

SAVE

The program will then be written onto the cassette. You should use the
tape counter on the cassette recorder to identify the beginning of the
program on the cassette.

To read the program back into RAM, rewind the tape and position it
at the start of the program (use the tape counter to find the right spot),
push the PLAY button on the cassette recorder, and type the command

LOAD

Note that the cassette recorder does not allow you to identify a pro-
gram by a program name.

46 GETTING STARTED IN APPLESOFT BASIC

You should try the above sequence of commands using the given
program. After saving the program, erase the program from RAM (by
typing NEW). Then load the program. Just to check that the program
has indeed been retrieved, you should now LIST it.

EXERCISES

Exercises 1-7 refer to the following program.

10 LET A=19.1: B=17.5
20 PRINT A+B,A*B
30 END

Type the above program into RAM and RUN it.
Erase the screen without erasing RAM. LIST the program.
Save the program and erase RAM.

Recall the program and LIST it. RUN the program again.

A

Add the following line to the program:

25 PRINT A"2+B"2
Do not retype the entire program! LIST and RUN the new program.
6. Save the new program without destroying the old one.

7. Recall the new program. Delete line 20 and RUN the resulting pro-
gram.

ANSWERS TO TEST YOUR UNDERSTANDING 1 and 2

1: a. LIST 200
b. LIST 300-330
c. LIST 300-

2: a. The line number of the last line to be deleted must be speci-
fied. It should read:

DEL 405,450

b. Nothing wrong.
c. The lower line number must come first. The command
should read:

DEL 200,300

LETTING YOUR COMPUTER MAKE DECISIONS 47

2.6 LETTING YOUR COMPUTER
MAKE DECISIONS

One of the principal features which makes computers useful as prob-
lem-solving tools is their ability to make decisions. The vehicle which
Applesoft BASIC uses to make decisions is the IF. . . THEN statement.
The IF part of such a statement allows us to ask a question. If the answer
is YES, then the computer carries out the THEN part of the statement. If
the answer is NO, then the computer goes on to the next statement in
numerical order. For example, consider the statement

500 IF N=0 THEN PRINT “CALCULATION DONE"”

First, the computer determines if N is equal to zero. If so, it prints
““CALCULATION DONE" and proceeds with the next instruction after
line 500. However, if N is not zero, then the computer goes directly to
the next instruction after line 500 and continues program execution
from that instruction.

A variation of the IF . . . THEN statement allows you to insert a line
number after THEN. For example, the instruction

600 IF N>0 THEN GOTO 500

will determine whether N is greater than 0. If so the program will go to
line 500. Otherwise, the program will go to the next line in numerical
sequence. Notice the GOTO after THEN. This may be omitted. In any
case, putting the GOTO in will never hurt anything.

After IF, you may insert any expression which the computer may test
for truth or falsity. Here are some examples:

N=0

N > 5 (N is greater than 5)

N < 12.9 (N is less than 12.9)

N >= 0 (N is greater than or equal to 0)

N <= —1 (N is less than or equal to —1)

N >< 0 (N is not equal to 0)

A + B <> C (A + B is not equal to C)

A2 + B2 <= C”'2 (A? + B? is less than or equal to C?)

NOTE: Any statement which follows on the same lineasan IF. . . THEN
statement will be executed only if the THEN part is executed. For exam-
ple, in the statement

10 IF A<B THEN C=D: GOTO 300
20 C=E

48 GETTING STARTED IN APPLESOFT BASIC

the computer will do the following: If Ais less than B, the computer will
set C equal to D. It will then go to 300. On the other hand if Ais not less
than B, the computer will go to the statement on line 20.

TEST YOUR UNDERSTANDING 1 (answers on page 57)
Write instructions which do the following:

a. If Ais less than B, then print the value of A plus B; if not, then
go to the end.

b. If A2 + D is at least 5000 then go to line 300; if not, go to line
500.

c. If N is larger than the sum of | and K, then set N equal to the
sum of | and K; otherwise, let N equal K.

The IF . . . THEN statement may be used to interrupt the normal
sequence of program line execution, based upon the truth or falsity of
some condition. In many applications, however, we will want to per-
form instructions out of the normal sequence, independent of any
conditions. For such applications, we may use the GOTO instruction.
This instruction has the form:

GOTO <line number>

For example, the instruction
1000 GOTO 300

will send the computer back to line 300 for its next instruction.

The next examples illustrate some of the uses of the IF . . . THEN
and GOTO statements.

Example 1. A lumber supply house has a policy that a credit invoice may
not exceed $1,000, including a 10 percent processing fee and 5 percent
sales tax. A customer orders 150 2%x4 studs at $1.99 each, 30 sheets of
plywood at $14.00 each, 300 pounds of nails at $1.14 per pound, and
two double hung insulated windows at $187.95 each. Write a program
which prepares an invoice and decides whether the order is over the
credit limit.

Solution. Let’s use the variables A1, A2, A3, and A4 to denote, respec-
tively, the numbers of studs, sheets of plywood, pounds of nails, and
windows. Let’s use the variables B1, B2, B3, and B4 to denote the unit
costs of these four items. The cost of the order is then computed as:

A1*B1+A2*B2+A3*B3+A4*B4.

LETTING YOUR COMPUTER MAKE DECISIONS 49

We add 10 percent of this amount to cover processing and form the
sum to obtain the total order. Next, we compute 5 percent of the last
amount as tax and add it to the total to obtain the total amount due.
Finally, we determine if the total amount due is more than $1,000. If it
is, we print out the message: ORDER EXCEEDS $1,000. CREDIT SALE
NOT PERMITTED. Here is our program.

10 LET A1=150:A2=30:A3=300:A4=2

20 LET B1=1.99:B2=14:B3=1.14:B4=189.75
30 LET T=A1*B1+A2*B2+A3*B3+A4*B4

40 PRINT “TOTAL ORDER"”,T

50 LET P=.1*T

60 PRINT “PROCESSING FEE”,P

70 LET TX=.05*(P+T)

80 PRINT ‘“SALES TAX"”,TX

90 DU=T+P+TX

100 PRINT “AMOUNT DUE”, DU

110 IF DU>1000 THEN GOTO 200

120 GOTO 300

200 PRINT “ORDER EXCEEDS $1,000”

210 PRINT “CREDIT SALE NOT PERMITTED”
220 GOTO 400

300 PRINT ““CREDIT SALE OK”

400 END

Note the decision in line 110. If the amount due exceeds $1,000 then the
computer goes to line 200 where it prints out a message denying credit.
In line 220, the computer is sent to line 400 which is the END of the
program. On the other hand, if the amount due is less than $1,000, the
computer is sent to line 300, in which credit is approved.

TEST YOUR UNDERSTANDING 2 (answers on page 57)

Suppose that a credit card charges 1.5 percent per month on any
unpaid balance up to $500 and 1 percent per month on any excess
over $500.

a. Write a program which computes the service charge and the
new balance.

b. Testyour program on the unpaid balances of $1,300 and $275.

TEST YOUR UNDERSTANDING 3 (answers on page 57)

Consider the following sequence of instructions.

100 IF A>=5 THEN GOTO 200
110 IF A>=4 THEN GOTO 300

50 GETTING STARTED IN APPLESOFT BASIC

120 IF A>=3 THEN GOTO 400
130 IF A>=2 THEN GOTO 500

Suppose that the current value of A is 3. List the sequence of line
numbers which will be executed.

Example 2. At $20 per square yard, a family can afford up to 500 square
feet of carpet for their dining room. They wish to install the carpet in a
circular shape. It is been decided that the radius of the carpet is to be a
whole number of feet. What is the radius of the largest carpet they can
afford? (The area of a circle of radius “/R” is Pl times R?, where Pl equals
approximately 3.14159.)

Solution. Let us compute the area of the circle of radius 1, 2, 3,4, . . .
and determine which of the areas are less than 500.

10 LET PI=3.14159

20 LET R=1 : REM R IS THE RADIUS OF THE CIRCLE

30 LET A=PI*R"2 : REM A IS THE AREA OF THE CIRCLE

40 IF A>=500 THEN GOTO 100 : REM IF AREA IS AT LEAST 500, END
50 PRINT R : REM IF AREA IS LESS THAN 500, PRINT R

60 LET R=R+1 : REM GO TO NEXT RADIUS

70 GOTO 30

100 END

Note that line 40 contains an IF. . . THEN statement. If A, as computed
in line 30, is 500 or more, then the computer goes to line 100, the END.
If Ais less than 500, the computer proceeds to the next line, namely 50.
It then prints out the current radius, increases the radius by 1, and goes
back to line 30 to repeat the entire procedure. Note that lines 30-40-50-
60-70 are repeated until the area becomes at least 500. In effect, this
sequence of five instructions forms a loop. However, we did not use a
FOR . . . NEXT instruction because we did not know in advance how
many times we wanted to execute the loop. We let the computer de-
cide the stopping point via the IF . . . THEN instruction.

Example 3. A school board race involves two candidates. The returns
from the four wards of the town are as follows:

Ward | Ward 2 Ward 3 Ward 4
Mr. Thompson 487 229 1540 1211
Ms. Wilson 1870 438 110 597

Calculate the total number of votes achieved by each candidate, the
percentage achieved by each candidate, and decide who won the elec-
tion.

LETTING YOUR COMPUTER MAKE DECISIONS 51

Solution. Let A1, A2, A3, and A4 be the totals for Mr. Thompson in the
four wards; let B1—B4 be the corresponding numbers for Ms. Wilson.
Let TA and TB denote the total votes, respectively, for Mr. Thompson
and Ms. Wilson. Here is our program:

10 LET A1=487: A2=229: A3=1540: A4=1211

20 LET B1=1870: B2=438: B3=110: B4=597

30 LET TA=A1+A2+A3+A4 : REM TOTAL FOR THOMPSON
40 LET TB=B1+B2+B3+B4 : REM TOTAL FOR WILSON

50 LET T=TA+TB : REM TOTAL VOTES CAST

60 LET PA=100*TA/T : REM PERCENTAGE FOR THOMPSON
65 REM TA/T IS THE FRACTION OF VOTES FOR THOMPSON— MULTIPLY
66 REM BY 100 TO CONVERT TO A PERCENTAGE

70 LET PB=100*TB/T : REM PERCENTAGE FOR WILSON

110 LET A$= “THOMPSON"’

120 LET B$= “WILSON"

130 REM 140—-170 PRINT THE PERCENTAGES OF THE CANDIDATES
140 PRINT “CANDIDATE”,“VOTES"”,PCT"”’

150 PRINT AS$,TA, PA

155 PRINT

160 PRINT B$,TB, PB

165 PRINT

170 REM 180—-400 DECIDE THE WINNER

180 IF TA>TB THEN GOTO 300

190 IF TA<TB THEN GOTO 400

200 PRINT “TIE VOTE!”

210 GOTO 1000

300 PRINT A$, “WINS”

305 PRINT

310 GOTO 1000

400 PRINT B$, “WINS”

410 PRINT

1000 END

Note the logic used for deciding who won. In line 180 we compare the
votes TA and TB. If TA is the larger, then A (Thompson) is the winner.
We then go to 300, print the result, and END. On the other hand, if TA
> TB is false, then either B wins or the two are tied. According to the
program, if TA > TB is false, we go to line 190, where we determine if TA
< TB. If this is true, then B is the winner, we go to 400, print the result,
and END. On the other hand, if TA < TB is false, then the only possibil-
ity left is that TA = TB. According to the program, if TA = TB we go to
200, where we print the proper result, and then END.

INFINITE LOOPS AND CTRL-C

As we have seen above, it is very convenient to be able to execute a
loop without knowing in advance how many times the loop will be
executed. However, with this convenience comes a danger. It is per-

52 GETTING STARTED IN APPLESOFT BASIC

fectly possible to create a loop which will be repeated an infinite num-
ber of times! For example, consider the following program:

10 LET N=1
20 PRINT N
30 LET N=N+1
40 GOTO 20
50 END

The variable N starts off at 1. We print it and then increase N by 1 (to 2),
printit, increase N by 1 (to 3), print it, and so forth. This program will go
on forever! Such programs should clearly be avoided. However, even
experienced programmers occasionally create infinite loops. When this
happens, there is no need to panic. There is a way of stopping the
computer. Just press the keys CTRL and C simultaneously. (In the fol-
lowing we will refer to this combination of keys as the CTRL C combina-
tion. This key sequence will interrupt the program currently in progress
and return the computer to command mode. The computer is then
ready to accept a command from the keyboard. Note, however, that
any program in RAM is undisturbed.

TEST YOUR UNDERSTANDING 4

Type the above program, RUN it and stop it using CTRL-C. After
stopping it, RUN the program again.

THE INPUT STATEMENT

It is very convenient to have the computer request information from
you while the program is actually running. This can be accomplished via
the INPUT statement. To see how, consider the statement

570 INPUT A

When the computer encounters this statement in the course of execut-
ing the program, it types out a ? and waits for you to respond by typing
the desired value of A (and then hitting the RETURN key). The computer
then sets A equal to the numeric value you specified and continues
running the program.

You may use an INPUT statement to specify the values of several
different variables at one time. These variables may be numeric or string
variables. For example, suppose that the computer encounters the
statement:

50 INPUT A,B,C$

LETTING YOUR COMPUTER MAKE DECISIONS 53

It will type
?
You then type in the desired values for A, B, and C$, in the same order

as in the program, and separated by commas. For example, suppose
that you type

10.5, 11.42, BEARINGS
followed by a RETURN. The computer will then set:
A =10.5, B = 11.42, C$ = “BEARINGS”

If you respond to the above question mark by typing only a single
number, 10.5, for example, the computer will respond with

?
to indicate that it expects more data. If you attempt to specify a string

constant where you should have a numeric constant, the computer will
respond with the message

¢ REENTER
and will wait for you to repeat the INPUT operation.

It is helpful to include a prompting message which describes the
input the computer is expecting. To do so, just put the message in
quotation marks after the word INPUT and place a semicolon after the
message (before the list of variables to be input). For example, consider
the statement

175 INPUT “ENTER COMPANY, AMOUNT ”; A$, B
When the computer encounters this program line, the dialog will be as
follows:

ENTER COMPANY, AMOUNT? AJAX OFFICE SUPPLIES, 2579.48

The underlined portion indicates your response to the prompt. The
computer will now assign the values:

A$ = ““AJAX OFFICE SUPPLIES”, B = 2579.48

TEST YOUR UNDERSTANDING 5 (answer on page 57)

Write a program which allows you to set variables A and B to any
desired values via an INPUT statement. Use the program to set A
equal to 12 and B equal to 17.

The next two examples illustrate the use of the INPUT statement, and
provide further practice in using the IF . . . THEN statement.

54 GETTING STARTED IN APPLESOFT BASIC

Example 4. You are a teacher compiling semester grades. Suppose there
are four grades for each student and that each grade is on the tradi-
tional 0 to 100 scale. Write a program which accepts the grades as input,
computes the semester average, and assigns grades according to the
following scale:

90-100 A
80-89.9 B
70-79.9 C
60-69.9 D
<60 F

Solution. We will use an INPUT statement to enter the grades into the
computer. Our program will allow you to compute the grades of stu-
dents, one after the other, via a loop. You may terminate the loop by
entering a negative grade. Here is our program.

5 HOME

10 PRINT “ENTER STUDENT’S 4 GRADES.”

20 PRINT ““SEPARATE GRADES BY COMMAS.”

30 PRINT “FOLLOW LAST GRADE WITH RETURN.”
40 PRINT “TO END PROGRAM, ENTER NEGATIVE GRADE.”
50 INPUT A1,A2,A3,A4

60 IF A1<0 THEN 200

70 IF A2<0 THEN 200

80 IF A3<0 THEN 200

90 IF A4<0 THEN 200

100 LET A=(A1+A2+A3+A4)/4

110 PRINT “SEMESTER AVERAGLE"”, A

120 IF A>=90 THEN PRINT “SEMESTER GRADE = A” : GOTO 10
130 IF A>=80 THEN PRINT “SEMESTER GRADE = B”” : GOTO 10
140 IF A>=70 THEN PRINT “SEMESTER GRADE = C"” : GOTO 10

150 IF A>=60 THEN PRINT “SEMESTER GRADE = D” : GOTO 10
160 PRINT “SEMESTER GRADE = F”

170 GOTO 10

200 END

Note the logic for printing out the semester grades. First compute the
semester average A. In line 120 we ask if A is greater than or equal to 90.
If so, we assign the grade A, and go to line 10. In case A is less than
90 line 120 sends us to line 130. In line 130, we ask if A is greater than or
equal to 80. If so, then we assign the grade B. (The point is that the only
way we can get to line 130 is for A to be less than 90. So if A is greater
than or equal to 80, we know that A lies in the B range.) If not, we go to
line 140, and so forth. This logic may seem a trifle confusing at first, but
after repeated use, it will seem quite natural.

Example 5. Write a program to maintain your checkbook. The program
should allow you to record an initial balance, enter deposits, and enter
checks. It should also warn you of overdrafts.

LETTING YOUR COMPUTER MAKE DECISIONS 55

Solution. Let the variable B always contain the current balance in the
checkbook. The program will ask for the type of transaction you wish to
record. A “D”" will mean that you wish to record a deposit; a “C"” will
mean that you wish to record a check; a “Q" will mean that you are
done entering transactions and wish to terminate the program. After
entering each transaction, the computer will figure your new balance,
report it to you, will check for an overdraft, and report any overdraft to
you. In case of an overdraft, the program will allow you to cancel the
preceding check!

10 INPUT “WHAT IS YOUR STARTING BALANCE "’; B

20 INPUT “WHAT TRANSACTION TYPE (D,C,OR Q) "’; A$
30 IF A$= “Q” THEN 1000

40 IF A$= “D” THEN INPUT “DEPOSIT AMOUNT ”; D:GOTO 110
100 IF A$= ‘“C” THEN 200

110 LET B=B+D : REM ADD DEPOSIT TO BALANCE

120 PRINT “YOUR NEW BALANCE IS”, B

130 GOTO 20

200 INPUT “CHECK AMOUNT"; C

210 LET B=B—C : REM DEDUCT CHECK AMOUNT

220 IF B<0 THEN GOTO 300 : REM TEST FOR OVERDRAFT
230 PRINT “YOUR NEW BALANCEIS ", B

240 GOTO 20

300 PRINT “LAST CHECK CAUSES OVERDRAFT”

310 INPUT “DO YOU WISH TO CANCEL CHECK(Y/N) ”; E$
320 IF E$= “Y” THEN GOTO 400

330 PRINT “YOUR NEW BALANCE IS”, B

340 GOTO 20

400 LET B=B+C: REM CANCEL LAST CHECK

410 GOTO 20

1000 END

You should scan this program carefully to make sure you understand
how each of the INPUT and IF . . . THEN statements is used. In addi-
tion, you should use this program to obtain a feel for the dialog be-
tween you and your computer when INPUT statements are used.

Example 6. Write an Applesoft BASIC program which tests mastery in
addition of two-digit numbers. Let the user suggest the problems, and
let the program keep score of the number correct out of ten.

Solution. Let us request that the program user suggest pairs of numbers
via an INPUT statement. The sum will also be requested via an INPUT
statement. An IF. . . THEN statement will be used to judge the correct-
ness. The variable R will keep track of the number correct. We will use a
loop to repeat the process ten times.

10 FOR N=1 TO 10 : REM LOOP TO GIVE 10 PROBLEMS

20 INPUT “TYPE TWO 2-DIGIT NUMBERS”’; A,B
30 INPUT “WHAT IS THEIR SUM”; C

56

GETTING STARTED IN APPLESOFT BASIC

40 IF A+B=C THEN GOTO 200

50 PRINT “SORRY. THE CORRECT ANSWER IS”,A+B

60 GO TO 500 : REM GO TO THE NEXT PROBLEM

200 PRINT “YOUR ANSWER IS CORRECT! CONGRATULATIONS"
210 LET R=R+1 : REM INCREASE SCORE BY 1

500 NEXT N

600 PRINT “YOUR SCORE IS”,R,CORRECT OUT OF 10”

700 PRINT “TO TRY AGAIN, TYPE RUN”

800 END

EXERCISES (answers on page 223)

1.

10.

Write a computer program to calculate all the perfect squares
which are less than 45,000. (Perfect squares are the numbers 1, 4,
9,16,25,36,49,. .. .)

. Write a computer program to determine all of the circles of inte-

ger radius and area less than or equal to 5,000 square feet. (The
area of a circle of radius R is PI*R\2, where Pl = 3.14159 approxi-
mately.)

. Write a computer program to determine the sizes of all those

boxes which are perfect cubes, have integer dimensions, and
have volumes of less than 175,000 cubic feet. (That is, find all
integers X for which X2 is less than 175,000.)

. Modify the arithmetic testing program of Example 4 so that the

operation tested is for multiplication instead of addition.

. Modify the arithmetic testing program of Example 4 so that it

allows you to choose, at the beginning of each group of ten
problems, from among these operations: addition, subtraction,
or multiplication.

. Write a program which accepts three numbers via an INPUT state-

ment and determines the largest of the three.

. Write a program which accepts three numbers via an INPUT state-

ment and determines the smallest of the three.

. Write a program which accepts a set of numbers via INPUT state-

ments and determines the largest among them.

. Write a program which accepts a set of numbers via INPUT state-

ments and determines the smallest among them.

The following data were collected by a sociologist. Six cities expe-
rienced the following numbers of burglaries in 1980 and 1981:

11.

12.

LETTING YOUR COMPUTER MAKE DECISIONS 57

City Burglaries 1980 Burglaries 1981

1 5,782 6,548
2 4,811 6,129
3 3,865 4,270
4 7,950 8,137
5 4,781 4,248
6 6,598 7,048

For each city, calculate the increase (decrease) in the number of
burglaries. Determine which had an increase of more than 500
burglaries.

Write a program which does the arithmetic of a cash register.
That is, let the program accept purchases via INPUT statements,
then total the purchases, figure out the sales tax (assume 5 per-
cent), and compute the total purchase. Let the program ask for
the amount of payment given and then let it compute the change
due.

Write a program which analyzes cash flow. Let the program ask
for cash on hand as well as accounts expected to be received in
the next month. Let the program also compute the total antici-
pated cash for the month. Let the program ask for the bills due in
the next month, and let it compute the total accounts payable
during the month. By comparing the amounts to be received and
to be paid out, let the program compute the net cash flow for the
month and report either a surplus or a deficit.

ANSWERS TO TEST YOUR UNDERSTANDING 1, 2, 3, and 5

1:

2.

a. 10 IF A<B THEN PRINT A+B : END

b. 10 IF A"24+D>=5000 THEN GOTO 300
20 GOTO 500

c. 10 IF N>I+K THEN N=I+K
20 IF N<=1+K THEN N=K

10 INPUT “UNPAID BALANCE"; B
20 IF B>500 THEN GOTO 100

30 GOTO 200

100 LET C=B—-500

110 IN=.015*500+.01*C

120 GOTO 300

200 IN=.015*B

300 PRINT “INTEREST EQUALS";IN

58 GETTING STARTED IN APPLESOFT BASIC

310 PRINT “NEW BALANCE EQUALS”;B+IN
320 END
3: 100—110—120—400

5: 10 PRINT “THE VALUES OF A AND B ARE":INPUT A,B
20 END

2.7 SOME PROGRAMMING TIPS

Now that we have learned the most elementary Applesoft BASIC com-
mands and statements, let us discuss a few topics which will make
programming easier.

TWO SHORTCUTS

Here are two shortcuts which will save time in typing programs.

1. Itis not necessary to include the word LET in a LET statement! The
statement

10 A=5
means the same thing to the computer as
10 LET A=5

2. A question mark may be used in place of the word PRINT. There-
fore, the statement
10 2 A, A$
means the same thing as the statement
10 PRINT A,A$

TEST YOUR UNDERSTANDING 1 (answer on page 61)
What is the output of the following program?

10 A=3: B=7

20 A=2*B+3*A

30 2 A,B"2

40 END

SOME PROGRAMMING TIPS 59

USING A PRINTER

In writing programs and analyzing their output, it is often easier to rely
on written output rather than output on the screen. In computer termi-
nology; written output is called hard copy and may be provided by a
wide variety of printers. Your Apple Il computer may be attached to a
large number of such printers, ranging from a dot-matrix thermal
printer costing only a few hundred dollars to a daisy wheel printer
costing several thousand dollars. As you begin to make serious use of
your computer, you will find it difficult to do without hard copy.

Indeed, writing programs is much easier if you can consult a hard
copy listing of your program at various stages of program development.
(One reason is that in printed output you are not confined to looking at
your program in 10-14 line “’snapshots.”) Also, you will want to use the
printer to produce output of programs, ranging from tables of numeri-
cal data to address lists and text files produced via a word processing
program.

To use a printer, it is necessary to install a printer interface card in
one of the unused slots (#1-#7), Slot #1 is usually used for the printer.
In what follows, we will assume that this is the case. To use the printer,
you must first redirect output from the screen to the printer via the
statement

10 PR #1

Now, you may produce hard copy on your printer by using the Apple-
soft BASIC statement PRINT. For example, the statement

10 PRINT A,A$

will print the current values of A and A$ on the printer, in print fields 1
and 2. (As is the case with the screen, Applesoft BASIC divides the
printer line into print fields which are 16 columns wide.) Moreover, the
statement

20 PRINT “Customer”,Credit Limit”’,Most Recent Pchs”’

will result in printing three headings in the first three print fields,
namely:

Customer Credit Limit Most Recent Pchs
To return output to the screen only, use the command
30 PR #0

Printing on the printer proceeds very much like printing on the screen.
It is important to realize, however, that in order to print on both the

60 GETTING STARTED IN APPLESOFT BASIC

screen and the printer, it may be necessary to use two PRINT state-
ments.* For example, to print the values of A and A$ on both the screen
and the printer, we must give instructions as follows:

10 PRINT AA$

20 PR #1

30 PRINT A,A$
40 PR #0

The last statement returns all subsequent output to the screen.

SOME THINGS TO CHECK

Writing programs in Applesoft BASIC is not difficult. However, it does
require a certain amount of care and meticulous attention to detail.
Each person must develop an individual programming style.

Here are a few tips which may help the novice programmer over
some of the rough spots of writing those first few programs.

1. Carefully think your program through. Break up the computa-
tion into steps. Outline the programming necessary for each of
the steps.

2. Work through your program by hand, pretending that you are
the computer. Don’t rush. Go through your program one step
at a time and check that it does what you want it to do.

3. Have you given all variables the values you want? Remember, if
you do not specify the value of a variable, Applesoft BASIC will
automatically assign it the value 0. This may not be the value you
intend!

4. Are all your loops complete? That is, have you included a NEXT
corresponding to each FOR? This is an easy mistake to make,
but it is also easy to catch. If Applesoft BASIC doesn’t find a
NEXT corresponding to a FOR when it attempts to run the pro-
gram, it will report the mistake and the line number in which it
occurs. This is just one of a series of checks which Applesoft
BASIC makes for consistency and completeness. (Later, we will
discuss the various error messages which Applesoft BASIC can
provide.) FOR . . . NEXT loops may be contained in one an-

*It will depend on your particular printer.

SOME PROGRAMMING TIPS 61

other. (They may be nested.) But the loop which starts earlier
must end later. In other words, loops may not ‘‘cross” one
another.

5. Check to see that your IF . . . THEN statements do not create
any infinite loops. This may be a difficult error to spot. How-
ever, it can be located with the following check. When you go
back to an earlier part of the program, ask yourself: what con-
dition must be present if the program is not to keep doubling
back forever? Is this condition guaranteed to occur?

In the upcoming chapters we will present some further ideas on debug-
ging your programs and on programming technique. For now, how-
ever, let’'s move on with learning to make our computer do interesting
things!

ANSWER TO TEST YOUR UNDERSTANDING 1
1: 23 49

More About

' Applesoft BASIC

In this chapter we will continue our introduction to Applesoft BASIC
programming. As in Chapter Two, we will organize our discussion by
application.

3.1 WORKING WITH TABULAR DATA

In the preceding chapter, we introduced the notion of a variable and
used variable names like

AA, B1, CZ, WO

Unfortunately, the supply of variables available to us is not sufficient for
many programs. Indeed, as we shall see in this chapter, there are rela-
tively innocent programs which require hundreds or even thousands of
variables. To meet the needs of such programs, Applesoft BASIC allows
the use of so-called subscripted variables. Such variables are used con-
stantly by mathematicians and are identifed by numbered subscripts
attached to a letter. For instance, here is a list of 1000 variables as they
might appear in a mathematical work:

A‘]/ AZI A3I e s ey A‘IO()O

The numbers used to distinguish the variables are called subscripts.
Likewise, the Applesoft BASIC language allows definition of variables to
be distinguished by subscripts. However, since the computer has diffi-
culty placing the numbers in the traditional position, they are placed in
parentheses on the same line as the letter. For example, the above list

63

64 MORE ABOUT APPLESOFT BASIC

of 1000 different variables would be written in Applesoft BASIC as:
A(M),AQ2),AB3), . . . ,A(1000)

Please note that the variable A(1) is not the same as the variable A1. You
may use both of them in the same program and Applesoft BASIC will
interpret them as different.

A subscripted variable is really a group of variables with a common
letter identification which is distinguished by different integer “sub-
scripts.” For instance, the above group of variables would constitute
the subscripted variable A(). It is often useful to view a subscripted
variable as a table or array. For example, the subscripted variable A()
considered above can be viewed as providing the following table of
information:

A(1)
A(2)
A(3)

A(1 000)

As shown here, the subscripted variable defines a table consisting of
1000 rows. Row number] contains a single entry, namely, the value of
the variable A(J). The first row contains the value of A(1), the second the
value of A(2), and so forth. Since a subscripted variable can be thought
of as a table (or array), subscripted variables are often called arrays.

The array shown is a table consisting of 1000 rows and a single
column. The Apple Il Computer allows you to consider more general
arrays. For example, consider the following financial table which re-
cords the monthly income for January, February, and March from each
of a chain of four dry cleaning stores:

Store #1 Store #2 Store #3 Store #4

Jan. 1258.38 2437.46 4831.90 987.12
Feb. 1107.83 2045.68 3671.86 1129.47
March 1298.00 2136.88 4016.73 1206.34

This table has three rows and four columns. It’s entries may be stored in
the computer as a set of 12 of variables:

A(1,1) A(1,2) A(1,3) A(1,4)

A2,1) A2,2) A2,3) A2,4)
AB,1) AB,2) AGB,3) AB3,4)

WORKING WITH TABULAR DATA 65

This array of variables is very similar to a subscripted variable, except
that there are now two subscripts. The first subscript indicates the row
number and the second subscript indicates the column number. For
example, the variable A(3,2) is in the third row, second column. A
collection of variables such as that given above is called a two-dimen-
sional array or a doubly-subscripted variable. Each setting of the variables
in such an array defines a tabular array. For example, if we assign the
values

A(1,1) = 1258.38, A(1,2) = 2437.46,
A(1,3) = 4831.90

and so forth, then we will have the table of earnings from the dry
cleaning chain.

So far, we have only considered numeric arrays—arrays whose varia-
bles can assume only numerical values. However, it is possible to have
arrays with variables that assume string values. (Recall that a string is a
sequence of characters: letter, numeral, punctuation mark, or other
printable keyboard symbol.) For example, here is an array which can
contain string data:

A$(1)

A$(2)

A$(3)

A$(4)

Here the dollar signs indicate that each of the variables of the array is a
string variable. If we assign the values

A$(1) = “SLOW”, A$(2) = “FAST”, A$(3) = “FAST”, A$(4) = “STOP”

then the array is just the table of words
SLOW
FAST

FAST
STOP

Similarly, the employee record table

Social Security Number Age Sex
178654775 38 M
345861023 29 F
789257958 34 F
375486595 42 M
457696064 21 F

66 MORE ABOUT APPLESOFT BASIC

may be stored in an array of the form B$(l,J), where | assumes any one
of the values 1, 2, 3, 4, 5 (I is the row), and] assumes any one of the
values 1, 2, 3 (J = the column). For example, B$(1,1) has the value
178654775"", B$(1,2) has the value /38", B$(1,3) has the value “M"”’, and
so forth.

The Apple 1| Computer even allows you to have arrays which have
three, four, or even more subscripts. For example, consider the dry
cleaning chain array introduced above. Suppose that we had one such
array for each of ten consecutive years. This collection of data could be
stored in a three-dimensional array of the form C(l,J,K), where | and)
represent the row and column, just as before, and K represents the
year. (K could assume the values 1,2,3,. . . ,10.)

An array may involve any number of dimensions up to 88. The sub-
scripts corresponding to each dimension may assume values from 0 to
32767. For all practical applications, any size array is permissible.

You must inform the computer of the sizes of the arrays you plan to
use in a program. This allows the computer to allocate memory space to
house all the values. To specify the size of an array, use a dimension
(DIM) statement. For example, to define the size of the subscripted
variable A(J) ,J =1, . . . , 1000, we insert the statement

10 DIM A(1000)

in the program. This statement informs the computer to expect varia-
bles A(0), A(1), . . . , A(1000) in the program and that it should set aside
memory space for 1001 variables. Note that, in the absence of further
instructions from you, Applesoft BASIC begins all subscripts at 0. If you
wish to use A(0), fine. If not, ignore it.

You need not use all the variables defined by a DIM statement. For
example, in the case of the DIM statement above, you might actually
use only the variables A(1), . . . , A(900). Don’t worry about it! Just
make sure that you have defined enough variables. Otherwise you
could be in trouble. For example, in the case of the subscripted variable
above, your program might make use of the variable A(1001). This will
create an error condition. Suppose that this variable is used first in line
570. When you attempt to run the program, the computer will report:

2 BAD SUBSCRIPT ERROR

Moreover, execution of the program will be halted. To fix the error,
merely redo the DIM statement to accommodate the undefined sub-
script.

WORKING WITH TABULAR DATA 67

To define the size of a two-dimensional array, use a DIM statement of
the form

10 DIM A(5,4)
This statement defines an array A(l,)), where | can assume the values 0,

1,2,3,4,5and) can assume the values 0, 1, 2, 3, 4. Arrays with three or
more subscripts are defined similarly.

TEST YOUR UNDERSTANDING 1 (answers on page 70)

Here is an array.

12 645.80
148 489.75
589 12.89
487 14.50

a. Define an appropriate subscripted variable to store this data.
b. Define an appropriate DIM statement.

It is possible to dimension several arrays with one DIM statement. For
example, the dimension statement

10 DIM A(1000), B$(5), A(5,4)

defines the array A(0), . . . , A(1000), the string array B$(0), . . . , B$(5)
and the two-dimensional array A(l,)) , I =0,...,5)=0,...,4.

We know how to set aside memory space for the variables of an array.
We must now take up the problem of assigning values to these varia-
bles. We could use individual LET statements, but with 1000 variables in
an array, this could lead to an unmanageable number of statements.
There are more convenient methods which make use of loops. The next
two examples illustrate two of these methods.

Example 1. Define an array A(J)) ,J = 1,2, . . . ,1000 and assign the
following values to the variables of the array

A1) =2,AQ) =4,A3) =6,A4) =8,. ..

Solution. We wish to assign each variable a value equal to twice its
subscript. That is, we wish to assign A()) the value 2*). To do this we use
a loop:

10 DIM A(1000)

20 FOR)=1 TO 1000
30 A())=2%)

40 NEXT)

50 END

68 MORE ABOUT APPLESOFT BASIC

Note that the program ignores the variable A(0). Like any variable which
has not been assigned a value, it has the value 0.

TEST YOUR UNDERSTANDING 2 (answer on page 70)

Write a program which assigns the variables A(0), . . . , A(30) the
values A(0) = 0, A(1) =1,AQ) =4,A3)=9,. ...

When the computer is first turned on or is reset, all variables (includ-
ing those in arrays) are cleared. All numeric variables are set equal to 0,
and all string variables are set equal to the null string (the string with no
characters in it). If you wish to return all variables to this state during
the execution of a program, use the command CLEAR. For example,
when the computer encounters the command

570 CLEAR

it will reset all the variables. The CLEAR command can be convenient if,
for example, you wish to use the same array to store two different sets
of information at two different stages of the program. After the first use
of the array you could then prepare for the second use by executing a
CLEAR.

Example 2. Define an array corresponding to the employee record
table above. Input the values given and print the table on the screen.

Solution. Our program will print the headings of the columns and then
ask for the table entries, one row at a time. We will store the entries in
the array B$(l,)), where lisone of 1,2, 3,4, or5and) isone of 1, 2, 3, or
4. We dimension the array as B$(5,3).

5 DIM B$(5,3)

10 PRINT “SOC.SEC. #”, “AGE”, “SEX"

20 FOR I=1TO 5

30 INPUT “SS #,AGE,SEX”’; B$(1,1),B$(1,2),B$(1,3)
40 PRINT B$(1,1),8%(1,2),B$(1,3)

50 NEXT |

60 END

TEST YOUR UNDERSTANDING 3 (answer on page 70)

Suppose that your program uses a9 X 2 array A$(l,)), a9 x 1 array
B$(1,)), and a 9 X 5 array C(l,J). Write an appropriate DIM state-
ment(s).

WORKING WITH TABULAR DATA 69

If you plan to dimension an array, you should always insert the DIM
statement before the variable first appears in your program. Otherwise,
the first time Applesoft BASIC comes across the array, it will assume
that the subscripts go from 0 to 10. If it subsequently comes across a
DIM statement, it will think you are changing the size of the array in the
midst of the program, something which is not allowed. If you try to
change the size of an array in the middle of a program, you will get an
error:

? REDIM’'D ARRAY ERROR

EXERCISES (answers on page 226)

For each of the following tables, define an appropriate array and deter-
mine the appropriate DIM statement.

1.5
2
1.7
4.9
1

2. 1.1 2.0 3.5
1.7 2.4 6.2

3. JOHN
MARY
SIDNEY

4.1 2 3

5. RENT 575.00
UTILITIES 249.78
CLOTHES 174.98
CAR 348.70

6. Display the following array on the screen:

Receipts
Store #1 Store #2

57,385.48 89,485.45
39,485.98 76,485.49
45,467.21 71,494.25

7. Write a program that displays the array of Exercise 6 along with
totals of the receipts from each store.

70 MORE ABOUT APPLESOFT BASIC

8. Expand the program in Exercise 7 so that it calculates and displays
the totals of ten-day periods. (Your screen will not be wide enough
to display the ten-day totals, so display them in a separate array.)

9. Devise a program which keeps track of the inventory of an appli-
ance store chain. Store the current inventory in an array of the
form

Store #1 Store #2 Store #3 Store #4
Refrig.
Stove
Air Cond.
Vacuum
Disposal

Your program should: 1) input the inventory corresponding to the
beginning of the day, 2) continually ask for the next transaction—
the store number and the number of appliances of each item sold,
and 3) in response to each transaction, update the inventory array
and redisplay it on the screen.

ANSWERS TO TEST YOUR UNDERSTANDING 1, 2, and 3

1: a. A1), 1=1,2,3,4;)=1,2
b. DIM A(4,2)

2: 10 DIM A(30)
20 FOR J=0TO 30
30 A())=)"2
40 NEXT)
50 END

3: DIM A%(9,2),B%(9,1),C(9,5)

3.2 INPUTTING DATA

In the preceding section, we introduced arrays and discussed several
methods for assigning values to the variables of an array. The most
flexible method was via the INPUT statement. However, this can be a
tedious method for large arrays. Fortunately, Applesoft BASIC provides
us an alternate method for inputting data.

A given program may need many different numbers and strings. You
may store the data needed in one or more DATA statements. A typical
data statement has the form

10 DATA 3.457, 2.588, 11234, “WINGSPAN"

INPUTTING DATA 71

Note that this data statement consists of four data items, three numeric
and one string. The data items are separated by commas. You may
include as many data items in a single DATA statement as the line
allows. Moreover, you may include any number of DATA statements in
a program and they may be placed anywhere in the program, although
a common placement is at the end of the program (just before the END
statement). Note that we enclosed the string constant “WINGSPAN"" in
quotation marks. Actually this is not necessary. A string constant in a
DATA statement does not need quotes as long as the string does not
start with a blank.

The DATA statements may be used to assign values to variables and,
in particular, to variables in arrays. Here’s how to do this. In conjunc-
tion with the DATA statements, you use one or more READ statements.
For example, suppose that the above DATA statement appeared in a
program. Further, suppose that you wish to assign the values

A = 3.457, B = 2.588, C = 11234, Z$ = “WINGSPAN"
This can be accomplished via the READ statement
100 READ A,B,C,Z$

Here is how the READ statement works. On encountering a READ state-
ment, the computer will look for a DATA statement. It will then assign
values to the variables in the READ statement by taking the values, in
order, from the DATA statement. If there is insufficient data in the first
DATA statement, the computer will continue to assign values using the
data in the next DATA statement. If necessary, the computer will pro-
ceed to the third DATA statement, and so forth.

TEST YOUR UNDERSTANDING 1 (answer on page 77)
Assign the following values:
A1) =5.1,AQ) = 4.7, AB3) = 5.8, A@4) = 3.2, A(5) = 7.9, A(6) = 6.9.

The computer maintains an internal pointer which points to the next
DATA item to be used. If the computer encounters a second READ
statement, it will start reading where it left off. For example, suppose
that instead of the above READ statement, we use the two read state-
ments

100 READ A,B
200 READ C,Z$

Upon encountering the first statement, the computer will look for the
location of the pointer. Initially, it will point to the first item in the first

72 MORE ABOUT APPLESOFT BASIC

DATA statement. The computer will assign the values A = 3.457 and B =
2.588. Moreover, the position of the pointer will be advanced to the
third item in the DATA statement. Upon encountering the next READ
statement, the computer will assign values beginning with the one des-
ignated by the pointer, namely C = 11234 and Z$ = “WINGSPAN".

TEST YOUR UNDERSTANDING 2 (answer on page 77)

What values are assigned to A and B$ by the following program?

10 DATA 10,30,“ENGINE”, “TACH”
20 READ A,B

30 READ C$,B$

40 END

The following example illustrates the use of DATA statements in as-
signing values to an array.

Example 1. Suppose that the monthly electricity costs of a certain fam-
ily are as follows:

Jan. $89.74 Feb. $95.84 March $79.42
Apr. 78.93 May 72.11 June 115.94
July 158.92 Aug. 164.38 Sep. 105.98
Oct. 90.44 Nov. 89.15 Dec. 93.97

Write a program calculating the average monthly cost of electricity.

Solution. Let us unceremoniously dump all of the numbers shown
above into DATA statements at the end of the program. Arbitrarily, let’s
start the DATA statements at line 1000, with END at 2000. This allows us
plenty of room. To calculate the average, we must add up the numbers
and divide by 12. To do this, let us first create an array A()) ,] =1,2,. . .,
12 and set A(J) equal to the cost of electricity in the Jth month. We do
this via a loop and the READ statement. We then use a loop to add all
the A()). Finally, we divide by 12 and PRINT the answer. Here is the
program.

10 DIM A(12)
15 REM LINES 20-40 ASSIGN VALUES TO A())

20 FOR J=1 TO 12

30 READ A())

40 NEXT)

50 FOR J=1 TO 12

60 C=C+A(J): REM C ACCUMULATES THE SUM OF THE A(j)
70 NEXT |

80 C=C/12 : REM DIVIDE SUM BY 12

INPUTTING DATA 73

90 PRINT “THE AVERAGE MONTHLY COST OF ELECTRICITY 1S”,C
1000 DATA 89.74, 95.84, 79.42, 78.93, 72.11, 115.94

1010 DATA 158.92, 164.38, 105.98, 90.44, 89.15, 93.97

2000 END

The following program could be helpful in preparing the payroll of a
small business.

Example 2. A small business has five employees. Here are their names
and hourly wages.

Name Hourly Wage
Joe Polanski 7.75
Susan Greer 8.50
Allan Cole 8.50
Betsy Palm 6.00

Herman Axler 6.00

Write a program which accepts as input hours worked for the current
week and calculates the current gross pay and the amount of Social
Security tax to be withheld from their pay. (Assume that the Social
Security tax amounts to 6.70 percent of gross pay.)

Solution. Let us keep the hourly wage rates and names in two arrays,
called A(J) and B$()), respectively, where] = 1, 2, 3, 4, 5. Note that we
can’t use a single two-dimensional array for this data since the names
are string data, and the hourly wage rates are numerical. (Recall that
Applesoft BASIC does not allow us to mix the two kinds of data in an
array.) The first part of the program will be to assign the values to the
variables in the two arrays. Next, the program will, one by one, print out
the names of the employees and ask for the number of hours worked
during the current week. This data will be stored in the array C()),) = 1,
2,3,4,5. The program will then compute the gross wages as A(J)*C())
(that is, (wage rate) times (number of hours worked)). This piece of data
will be stored in the array D()), } = 1, 2, 3, 4, 5. Next, the program will
compute the amount of Social Security tax to be withheld as .0670*D(J).
This piece of data will be stored in the array E()),) = 1, 2, 3, 4, 5. Finally,
all the computed data will be printed on the screen. Here is the pro-
gram:

10 DIM A(5),B$(5),C(5),D(5),E(5)

20 FOR J=1TO 5

30 READ B$()),A()

40 NEXT |

50 FOR J=1TO 5

60 PRINT “TYPE CURRENT HOURS OF ", B$())

70 INPUT C())
80 D())=A()*C()

74 MORE ABOUT APPLESOFT BASIC

90 E())=.0670*D())

100 NEXT)

110 PRINT “EMPLOYEE"”,"GROSS WAGES",“SS.TX"
120 FOR J=1TO 5

130 PRINT B$()),D(),E()

140 NEXT)

200 DATA JOE POLANSKI, 7.75, SUSAN GREER, 8.50
210 DATA ALLAN COLE, 8.50, BETSY PALM, 6.00 '
220 DATA HERMAN AXLER, 6.00

1000 END

In certain applications, you may wish to read the same DATA state-
ments more than once. To do this you must reset the pointer via the
RESTORE statement. For example, consider the following program.

10 DATA 2.3, 5.7, 4.5, 7.3
20 READ A,B

30 RESTORE

40 READ C,D

50 END

Line 20 sets A equal to 2.3 and B equal to 5.7. The RESTORE statement of
line 30 moves the pointer back to the first item of data, 2.3. The READ
statement of line 40 then sets C equal to 2.3 and D equal to 5.7. Note
that without the RESTORE in line 30, the READ statement in line 40
would set C equal to 4.5 and D equal to 7.3.

There are two common errors in using READ and DATA statements.
First, you may instruct the program to READ more data than is present
in the DATA statements. For example, consider the following program.

10 DATA 1,2,3,4

20 FOR J=1TO 5

30 READ A())

40 NEXT)
50 END

This program attempts to read five pieces of data, but the DATA state-
ment only has four. In this case, you will receive an error message

2 OUT OF DATA ERROR IN 30
A second common error is attempting to assign a string value to a
numeric variable or vice versa. Such an attempt will lead to

? TYPE MISMATCH ERROR

The Apple || Computer allows you to save an array on a cassette using

the STORE instruction. To save A(l,},K), we would use an instruction of
the form

100 STORE A

INPUTTING DATA 75

Prior to running a program containing a STORE instruction, it is neces-
sary to position the cassette to a blank portion of tape and to turn on
the cassette recorder to record. To recall the array from the cassette,
use the instruction:

200 RECALL A

In order to use a RECALL instruction, it is necessary to position the tape
at the beginning of the area on which A was stored and to turn on the
cassette recorder to play. If you wish to do both STORE and RECALL in a
single program, it will be necessary to program a STOP and a screen
prompt into the program in order to tell you to reposition the tape and
change the recorder from record to play.

EXERCISES (answers on page 228)

Each of the following programs assigns values to the variables of an
array. Determine which values are assigned.

1. 10 DIM A(10)
20 FOR J=1TO 10
30 READ A())
40 NEXT)
50 DATA 2,4,6,8,10,12,14,16,18,20
100 END

2. 10 DIM A(3),B(3)
20 FOR J=0TO 3
30 READ A()), B())
40 NEXT)
50 DATA 1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8,9.9
60 END

3. 10 DIM A(3),B$(3)
20 FORJ=0TO 3
30 READ A())
40 NEXT)
50 FOR J=0TO 3
60 READ B$())
70 NEXT)
80 DATA 1,2,3,4,A,B,C,D
90 END

4. 10 DIM A(3), B(3)
20 READ A(0),B(0)
30 READ A(1),B(1)

76 MORE ABOUT APPLESOFT BASIC

40 RESTORE

50 READ A(2),B(2)

60 READ A(3),B(3)

70 DATA 1,2,3,4,5,6,7,8
80 END

5. 10 DIM A33,4)
20 FORI=1TO 3
30 FORJ=1TO 4
40 READ A(l,))
50 NEXT)
60 NEXT |
70 DATA1,2,3,4,5,6,7,8,9,10,11,12
80 END

6. 10 DIM A33,4)
20 FOR J=1TO 4
30 FORI=1TO 3
40 READ A(l,))
50 NEXT |
60 NEXT)
70 DATA1,2,3,4,5,6,7,8,9,10,11,12
80 END

Each of the following programs contains an error. Find it.

7. 10 DIM A(5) 8. 10 DIM A(5)
20 FOR J=1TO 5 20 FOR J=1TO 5
30 READ A()) 30 READ A())
40 NEXT) 40 NEXT)
50 DATA 1,2,3,4 50 DATA 1,A,2,B
60 END 60 END

9. Here is a table of Federal Income Tax Withholding of weekly
wages for an individual claiming one exemption. Assume that
each of the employees, in the business discussed in the text,
claims a single exemption. Modify the program given so that it
correctly computes Federal Withholding and the net amount of
wages. (That is, the total after Federal Withholding and Social
Security are deducted.)

Wages at Least But Less Than Tax Withheld

200 210 29.10
210 220 31.20
220 230 33.80

230 240 36.40

INPUTTING DATA 77

Wages at Least But Less Than Tax Withheld

240 250 39.00
250 260 41.60
260 270 44.20
270 280 46.80
280 290 49.40
290 300 52.10
300 310 55.10
310 320 58.10
320 330 61.10
330 340 64.10
340 350 67.10

10. Here is a set of 24 hourly temperature reports as compiled by the
National Weather Service. Write a program to compute the aver-
age temperature for the last 24 hours. Let your program respond
to a query concerning the temperature at a particular hour. (For
example, what was the temperature at 2:00 PM?)

AM PM
12:00 10 38
1:00 10 39
2:00 9 40
3:00 9 40
4:00 8 42
5:00 11 38
6:00 15 33
7:00 18 27
8:00 20 22
9:00 25 18
10:00 31 15
11:00 35 12

ANSWERS TO TEST YOUR UNDERSTANDING 1 and 2

1: 10 DATA 5.1,4.7,5.8,3.2,7.9,6.9
20 FOR J=1TO 6
30 READ A())
40 NEXT)
50 END

2: A=10, B$="TACH"”

78 MORE ABOUT APPLESOFT BASIC

3.3 ADVANCED PRINTING

In this section, we will discuss the various ways in which you can format
output on the screen and on the printer. Applesoft BASIC is quite
flexible in the form in which you can cast output. You have control over
placement of output on the line, degree of accuracy to which calcula-
tions are displayed, and so forth. Let us begin by reviewing what we
have already learned about printing.

There are 40 print positions in each line. These are divided into print
zones of 16 characters each. To start printing at the beginning of the
next print zone, insert a comma between the items to be printed. To
avoid any space between items, separate them in the PRINT statement
by a semicolon. For example, the following program

10 A=5

20 PRINT “THE VALUE OF A IS EQUAL TO ;A

30 END

will result in the following screen display:
THE VALUE OF A IS EQUAL TO 5

Note that the first print item ends with a space. This is to guarantee a
space between the final O and the 5.

TEST YOUR UNDERSTANDING 1 (answer on page 82)

Write a program which allows you to input two numbers. The
program should then display them as an addition problem in the
form5 + 7 = 12.

HORIZONTAL TABBING

You may begin a print item in any position on a line. To do this, use the
TAB command. Note that a logical line may be up to 255 characters
long. On the screen, an oversized line will wrap around to the next
line. However, the line will print correctly on a printer having a wide
enough print line. The positions of characters on logical lines are num-
bered from 0 to 255. The statement TAB(7) means to move to position 7.
TAB is always used in conjunction with a PRINT statement. For example,
the print statement

50 PRINT TAB(7) A

will print the value of the variable A, beginning in print position 7. It is

ADVANCED PRINTING 79

possible to use more than one TAB per PRINT statement. For example,
the statement '

100 PRINT TAB(5) A; TAB(15) B

will print the value of A beginning in print position 5, and the value of B
beginning in print position 15. Note the semicolon between the two
TAB instructions.

In typing a PRINT statement, you may run out of room on the line. To
get around this problem, end the PRINT statement with a semicolon
and continue the list of print items in another PRINT statement on the
next line. For example, consider the pair of statements

100 PRINT “INVENTORY"’;
110 PRINT , “OF LADIES SHOES"”

The first line has a single print item. The semicolon indicates continued
printing on the same line. The comma which begins the second PRINT
statement moves printing to the beginning of the next print zone,
where the string in line 110 is printed. Here is what the output looks
like:

INVENTORY OF LADIES SHOES

TEST YOUR UNDERSTANDING 2 (answer on page 82)

Write an instruction printing the value of A in column 25 and the
value of B seven columns further to the right.

FORMATTING NUMBERS

Thus far, we have accepted numerical output from the Apple Il in the
form in which it was dispensed from the computer. However, this led
to occasional embarrassments earlier in this book. For example,
columns of numbers didn’t line up, dollars and cents items were dis-
played to hundredths of a cent, and so forth. Let us now consider how
to control the format of numerical ouput.

The Apple Il carries out calculations to as many as 10 significant
digits. Here are some typical examples of ouput:

1001, 1075.312, 123456789, 1.2415921E12

In many applications, it is necessary to round a number X to a given
number of decimal places, say N places. This may be accomplished in

80 MORE ABOUT APPLESOFT BASIC

Applesoft BASIC using the statement
INT(X*10"N+.5)/10"'N

(For now, don’t worry where we came up with this.) For example, 5.758
rounded to one decimal place is equal to

INT(5.758*10+.5)/10

In preparing financial statements, it is usually necessary to print
columns of numbers which are aligned, the one’s under the one’s
column, the ten’s under the ten’s column, and so forth. This may be
done by printing an appropriate number of blanks in front of the num-
ber. For example, suppose you wish to print a column of numbers, the
longest of which consists of 9 digits and a decimal point. At the begin-
ning of each number in the column, you would insert enough spaces so
that the length of the resulting number would be 10 characters (includ-
ing the decimal point). The “length” of a number X may be computed
using the statement

LEN(STR$(X))

(The STR$(X) is just X converted to a string constant. LEN gives the

length of the string.) The number of spaces to be inserted would then
be

10 —LEN(STR$(X))

Finally, this number of spaces in front of X may be generated by using
the PRINT statement

PRINT SPC(10-LEN(STR$(X))); X

TEST YOUR UNDERSTANDING 3 (answer on page 83)

Write an instruction which prints the number 456.75387 rounded
to two decimal places.

TEST YOUR UNDERSTANDING 4 (answer on page 83)

Write a program to calculate and display the numbers 2},) =
1,2,3,...,15. The columns of the numbers should be properly
aligned on the right.

Example 1. Here is a list of checks written by a family during the month
of March.

$15.32, $387.25, $57.98, $3.47, $15.88

ADVANCED PRINTING 81

Print the list of checks on the screen with the columns properly aligned
and the total displayed below the list of check amounts, in the form of
an addition problem.

Solution. We first read the check amounts into an array A(J)),) =1, 2, 3,
4,5. While we read the amounts, we accumulate the total in the variable
B. We use a second loop to print the display in the desired format.

10 DATA 15.32, 387.25, 57.98, 3.47, 15.88
20 FOR J=1TO 5

30 READ A())

40 B=B+A()

50 PRINT “$";SPC(6-LEN(STR$(A())))); A(J))
60 NEXT |

70 PRINT “eeeeen?

80 PRINT “$”;SPC(6-LEN(STR$(B)));B

90 END

Here is what the output will look like:

$ 15.32
$387.25
$ 57.98
$ 3.47
$ 15.88

$479.90

Note that line 70 is used to print the line under the column of figures.

EXERCISES (answers on page 229)

Write programs which generate the following displays. The lines of dots
are not meant to be displayed. They are furnished for you to judge
spacing.

1. THE VALUE OF X IS 5.378
2. THE VALUE OF X IS 5.378
3. DATE QTY @ COST DISCOUNT COST

4. 6.753
15.111
111.850
6.702
Calculate
Sum

82 MORE ABOUT APPLESOFT BASIC

5. % 12.82
$117.58
$ 5.87
$.99
Calculate
Sum

6. Date 3/18/81
Pay to the Order of Wildcatters, Inc.
The sum of *********¢89 385.00

7. 5,787
387
127,486
38,531
Calculate
Sum
8. $385.41
-$17.85
Calculate
Difference

9. Write a program which rounds a number to the nearest integer.
For example, if the input is 11.7, the output is 12. If the input is
158.2, the output is 158. Your program should accept the number
to be rounded via an INPUT statement.

10. Write a program which allows your computer to function as a cash
register. Let the program accept purchase amounts via INPUT
statements. Let the user tell the program when the list of INPUTSs is
complete. The program should then print out the purchase
amounts, with dollar signs and columns aligned, compute the
total purchase, add 5 percent sales tax, compute the total amount
due, ask for the amount paid, and compute the change due.

ANSWERS TO TEST YOUR UNDERSTANDING 1, 2, 3, and 4

1: 10 INPUT AB
20 PRINT A;“+";B;"=";A+B
30 END

2: 10 PRINT TAB(25) A;TAB(32) B

GAMBLING WITH YOUR COMPUTER 83

3: 10 PRINT INT(456.73:87*102+.5)/10"\2

4: 10 FOR J=1TO 15
20 PRINT SPC(5-LEN(STR$(2Y)))); 27
30 NEXT)
40 END

3.4 GAMBLING WITH YOUR COMPUTER

One of the most interesting features of your computer is its ability to
generate events whose outcomes are ““random.” For example, you may
instruct the computer to ““throw a pair of dice” and produce a random
pair of integers between 1 and 6. You may instruct the computer to
“pick a card at random from a deck of 52 cards.” You may also program
the computer to choose a two-digit number ““at random.”” And so forth.
The source of all such random choices is the random number generator,
which is a part of Applesoft BASIC. So let us begin by explaining what
the random number generator is and how to access it. We will then give
a number of interesting applications involving computer-assisted in-
struction and games of chance.

You may generate random numbers using the Applesoft BASIC func-
tion RND(1). To explain how this function works, let us consider the
following program:

10 FOR X=1 TO 500
20 PRINT RND(1)
30 NEXT X

40 END

This program consists of a loop which prints 500 numbers, each called
RND(1). Each of these numbers lies between 0.0000000000 (inclusive)
and 1.000000000 (exclusive). Each time RND(1) is called (as in line 20
above) the computer makes a ““‘random’” choice from among the num-
bers in the indicated range. This is the number that is printed.

To obtain a better idea of what we are talking about, you should
generate some random numbers using a program like the one above.
Unless you have a printer, 500 numbers will be too many for you to look
at in one viewing. You should print two random numbers on one line
(one per print zone) and limit yourself to 24 displayed lines at one time.

84 MORE ABOUT APPLESOFT BASIC

Here is a partial printout of such a program.

.2451213213 .3050034958
.9845468610 9011598475
.8966099342 .6602124859
.5839383519 4481638341
1371193105 .2265442384

What makes these numbers “random’’ is that the procedure the com-
puter uses to select them is ““unbiased,” with all numbers having an
equal likelihood of selection. Moreover, if you generate a large collec-
tion of random numbers, then numbers between 0 and .1 will comprise
approximately 10 percent of those chosen, those between .5 and 1.0
will comprise 50 percent of those chosen, and so forth. In some sense,
the random number generator provides a uniform sample of the num-
bers between 0 and 1.

TEST YOUR UNDERSTANDING 1 (answer on page 89)

Assume that RND(1) is used to generate 1000 numbers. Approxi-
mately how many of these numbers would you expect to lie be-
tween .6 and .92

The function RND(1) generates random numbers lying between 0 and
1. In many applications, however, we will require randomly chosen
integers lying in a certain range. For example, suppose that we wish to
generate random integers chosen from among 1, 2, 3, 4, 5, 6. Let us
multiply RND(1) by 6, to obtain 6*RND(1). This is a random number
between 0.0000000000 and 5.999999999. Next, let us add 1 to this num-
ber. Then 6*RND(1)+1 is a random number between 1.000000000 and
6.999999999. To obtain integers from among 1, 2, 3, 4, 5, 6, we must
‘““’chop off”” the decimal portion of the number 6*RND(1)+1. To do this,
we use the INT function. If X is any number, then INT(X) is the largest
integer less than or equal to X. For example,

INT(5.23)=5, INT(7.99)=7, INT(100.001)=100

Be careful in using INT with negative X. The definition we gave is cor-
rect, but unless you think things through, it is easy to make an error.
For example,

INT(-7.4)=-8
since the largest integer less than or equal to —7.4 is equal to —8. (Draw

—7.4 and —8 on a number line to see the point!) Let us get back to our
random numbers. To chop off the decimal portion of 6*RND(1)+1, we

GAMBLING WITH YOUR COMPUTER 85
compute INT(6*RND(1)+1). This last expression is a random number

from among 1, 2, 3, 4, 5, 6. Similarly, the expression
INT(100*RND(1)+1)

may be used to generate random numbers from among the integers
1,2,3,...,100.

TEST YOUR UNDERSTANDING 2 (answer on page 89)

Generate random integers from 0 to 1. (This is the computer ana-
logue of flipping a coin: 0 = heads, 1 = tails). Run this program to
generate 50 coin tosses. How many heads and how many tails
occur?

Example 1. Write a program which turns the computer into a pair of
dice. Your program should report the number rolled on each as well as
the total.

Solution. We will hold the value of die #1 in the variable X and the
value of die #2 in variable Y. The program will compute values for X and
Y, print out the values and the total X + Y.

10 HOME

20 LET X=INT(6*RND(1)+1)

30 LET Y=INT(6*RND(1)+1)

40 PRINT “LADIES AND GENTLEMEN, BETS PLEASE!"”
50 INPUT “ARE ALL BETS DOWN(Y/N)”’; A$

60 IF A$="Y” THEN 100

70 GOTO 40

100 PRINT “THE ROLL IS”,X,Y

110 PRINT “THE WINNING TOTAL IS ““ ; X+Y
120 INPUT “PLAY AGAIN(Y/N)”; B$

130 IF B$="Y” THEN 10

200 PRINT “THE CASINO IS CLOSING. SORRY!”
210 END

Note the use of computer-generated conversation on the screen. Note
also, how the program uses lines 120-130 to allow the player to control
how many times the game will be played.

TEST YOUR UNDERSTANDING 3 (answer on page 89)

Write a program which flips a “’biased coin”. Let it report ““heads”’
one-third of the time and tails two-thirds of the time.

86 MORE ABOUT APPLESOFT BASIC

You may enhance the realism of a gambling program by letting the
computer keep track of bets as in the following example.

Example 2. Write a program which turns the computer into a roulette
wheel. Let the computer keep track of bets and winnings for up to five
players. For simplicity, assume that the only bets are on single numbers.
(In the next section, we will let you remove this restriction!)

Solution. A roulette has 38 positions: 1-36, 0, and 00. In our program,
we will represent these as the numbers1-38, with 37 corresponding to 0
and 38 corresponding to 00. A spin of the wheel will consist of choosing
arandom integer between 1 and 38. The program will start by asking the
number of players. For a typical spin of the wheel, the program will ask
for bets by each player. A bet will consist of a number (1-38) and an
amount bet. The wheel will then spin. The program will determine the
winners and losers. A payoff for a win is 32 times the amount bet. Each
player has an account, stored in an array A(J),] = 1, 2, 3, 4. At the end of
each spin, the accounts are adjusted and displayed. Just as in Example 1
above, the program asks if another play is desired. Here is the program.

10 INPUT “NUMBER OF PLAYERS”;N

20 DIM A(5),B(5),C(5): REM AT MOST 5 PLAYERS ALLOWED
25 REM LINES 30-60 ALLOW PLAYERS TO PURCHASE CHIPS
30 FOR J=1 TO N : REM FOR EACH OF THE PLAYERS

40 PRINT ‘“PLAYER “;)

50 INPUT “HOW MANY CHIPS”; A())

60 NEXT)

100 PRINT “LADIES AND GENTLEMEN!"

105 PRINT “PLACE YOUR BETS PLEASE!”

110 FOR J=1 TO N : REM FOR EACH OF THE PLAYERS

120 PRINT “PLAYER ;]

130 INPUT “NUMBER, AMOUNT"’; B(}),C(J):REM INPUT BET
140 NEXT)

200 X=INT(38*RND(1)+1): REM SPIN THE WHEEL

210 REM LINES 210-300 DISPLAY THE WINNING NUMBER
220 PRINT “THE WINNER IS NUMBER “; X

300 REM: LINES 310-590 DETERMINE WINNINGS AND LOSSES
310 FOR J=1 TO N : REM FOR EACH PLAYER

320 IF X = B(J) THEN 400

330 A(J)) = A())—C()): REM PLAYER } LOSES. DEDUCT BET
340 PRINT ““PLAYER "’;] ;' LOSES”

350 GO TO 420

400 A(J)=A())+32*C(J): REM PLAYER] WINS. ADD WINNINGS
410 PRINT “PLAYER ";J;* WINS ”’; 32*C(}); DOLLARS”
420 NEXT)

430 PRINT “PLAYER BANKROLLS"”

440 PRINT

450 PRINT ‘“PLAYER”’, ““CHIPS”

460 FOR)=1 TON

GAMBLING WITH YOUR COMPUTER 87

470 PRINT J,A())

480 NEXT)

500 INPUT “DO YOU WISH TO PLAY ANOTHER ROLL(Y/N) ’;R$
510 HOME

520 IF R$="Y” THEN 100

530 PRINT “THE CASINO IS CLOSED. SORRY!”

600 END

You should try a few spins of the wheel. The program is fun as well as
instructive. Note that the program allows you to bet more chips than
you have. We will leave it to the exercises to add in a test that there are
enough chips to cover the bet. You could also build lines of credit into
the game!

You may treat the output of the random number generator as you
would any other number. In particular, you may perform arithmetic
operations on the random numbers generated. For example, 5*RND(1)
multiplies the output of the random number generator by 5, and
RND(1) + 2 adds 2 to the output of the random number generator. Such
arithmetic operations are useful in producing random numbers from
intervals other than 0 to 1. For example, to generate random numbers
between 2 and 3, we may use RND(1) + 2.

Example 3. Write a program which generates 10 random numbers lying
in the interval from 5 to 8.

Solution. Let us build up the desired function in two steps. We start
from the function RND(1), which generates numbers from 0 to 1. First,
we adjust for the length of the desired interval. From 5 to 8 is 3 units, so
we multiply RND(1) by 3. The function 3*RND(1) generates numbers
from 0 to 3. Now we adjust for the starting point of the desired interval,
namely 5. By adding 5 to 3*RND(1), we obtain numbers lying between
0+5 and 3+5, that is between 5 and 8. Thus, 3*RND(1) + 5 generates
random numbers between 5 and 8. Here is the program required.

10 FOR J=1 TO 10
20 PRINT 3*RND(1)+5
30 NEXT |

40 END

Example 4. Write a function to generate random integers from among
56,78, ...,12.

Solution. There are 8 consecutive integers possible. Let us start with the
function 8*RND(1), which generates random numbers between 0 and 8.
Since we wish our random number to begin with 5, let us add 5 to get
8*RND(1) + 5. This produces random numbers between 5.000000000
and 12.99999999. We now use the INT function to chop off the decimal

88

MORE ABOUT APPLESOFT BASIC

part. This yields the desired function:
INT(8*RND(1)+5)

EXERCISES (answers on page 230)

Write Applesoft BASIC functions which generate random numbers of
the following sorts.

10.

11.

12.

© @ NP w oA W

Numbers from 0 to 100.
Numbers from 100 to 101.

. Integers from 1 to 50.
. Integers from 4 to 80.

. Even integers from 2 to 50.

Numbers from 50 to 100.
Integers divisible by 3 from 3 to 27.
Integers from among 4, 7, 10, 13, 16, 19, and 22.

Modify the dice program so that it keeps track of payoffs and
bankrolls, much like the roulette program in Example 2 (page
86). Here are the payoffs on a bet of one dollar for the various
bets:

outcome payoff

35

17

11
8
6.20
5
6.20
8

10 11

11 17

12 35

OooNOULhWN

Modify the roulette program of Example 2 to check that a player
has enough chips to cover the bet.

Modify the roulette program of Example 2 to allow for a $100 line
of credit for each player.

Construct a program which tests one-digit arithmetic facts, with
the problems randomly chosen by the computer.

SUBROUTINES 89

13. Make up a list of ten names. Write a program which will pick four
of the names at random. (This is a way of impartially assigning a
nasty task!)

ANSWERS TO TEST YOUR UNDERSTANDING 1, 2, and 3
1: 30%

2: 10 FOR J=1to 50
20 PRINT INT(2*RND(1)+1)
30 NEXT)
40 END

3: 10 LET X=INT(3*RND(1) + 1)
20 IF X=1 THEN PRINT “HEADS": GOTO 40
30 PRINT “TAILS”
40 END

3.5 SUBROUTINES

In writing programs it is often necessary to use the same sequence of
instructions more than once. It may not be convenient (or even feasi-
ble) to retype the set of instructions each time it is needed. Fortunately,
Applesoft BASIC offers a convenient alternative: the subroutine.

A subroutine is a program which is incorporated within another,
larger program. The subroutine may be used any number of times by
the larger program. Often, the lines corresponding to a subroutine are
isolated toward the end of the larger program. This arrangement is
illustrated in Figure 3-1 (page 90). The arrow to the subroutine indicates
the point in the larger program at which the subroutine is used. The
arrow pointing away from the subroutine indicates that, after comple-
tion of the subroutine, execution of the main program resumes at the
point at which it was interrupted.

Subroutines are handled with the pair of instructions GOSUB and
RETURN. The statement

100 GOSUB 1000

sends the computer to the subroutine which begins at line 1000. The
computer starts at line 1000 and carries out statements in order. When a
RETURN statement is reached, the computer goes back to the main
program, starting at the first line after 100. The next example illustrates
the use of subroutines.

90 MORE ABOUT APPLESOFT BASIC

Main Program

BN /
Subroutine

Figure 3-1. A subroutine.

Example 1. Modify the roulette program of Example 2 (page 86), so
that it allows bets on EVEN and ODD. A one dollar bet on either of these
pays one dollar in winnings.

Solution. Our program will now allow three different bets:on a number
and on EVEN or ODD. Let us design subroutines, corresponding to
each of these bets, which determine whether player) wins or loses. For
each subroutine, let X be the number (1-38) which results from spin-
ning the wheel. In the preceding program, a bet by player] was de-
scribed by two numbers: B(J) equals the number bet and C(J) equals the
amount bet. Now let us add a third number to describe a bet. Let D())
equal 1if] bets on a number, 2 if] bets on EVEN, and 3 if] bets on ODD.
In case D(J) is 2 or 3, we will again let C()) equal the amount bet, but
B(J) will be 0. The subroutine for determining the winners of bets on
numbers can be obtained by making small modifications to the corre-
sponding portion of our previous program, as follows:

1000 IF B(J)=X THEN 1100

1005 GOTO 1010

1010 PRINT “PLAYER "’;};* LOSES”

1020 A())=A()—C())

1030 RETURN

1100 PRINT “PLAYER "’;};* WINS ”’; 32*C()); DOLLARS”

SUBROUTINES

1110 A(D)=A()+32*C())
1120 RETURN

Here is the subroutine corresponding to the bet EVEN.

2000 K=1

2010 IF X=2*K THEN 2100

2015 K=K+ 1:1F K>19 THEN 2030

2020 GOTO 2010

2030 PRINT ““PLAYER "’;};* LOSES”

2040 A()=A(—COD)

2050 RETURN

2100 PRINT ““PLAYER "’;J;* WINS ";C());’ DOLLARS"”
2110 A()=A()+C()

2120 RETURN

Finally, here is the subroutine corresponding to the bet ODD.

3000 K=0

3005 IF X=2*K+1 THEN 3100
3010 K=K+1

3015 IF K > 19 THEN 3030

3020 GOTO 3005

3030 PRINT ‘““PLAYER "’;};** LOSES”
3040 A()=A()—C())

3050 RETURN

3100 PRINT “PLAYER "’;}J;”” WINS ”’; C());* DOLLARS”
3110 A()=A()+C()

3120 RETURN

91

Now we are ready to assemble the subroutines together with the main
portion of the program, which is almost the same as before. The only
essential alteration is that we must now determine, for each player,

which bet was placed.

10 INPUT “NUMBER OF PLAYERS”;N

20 DIM A(5),B<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>